共查询到18条相似文献,搜索用时 93 毫秒
1.
随着图的广泛应用,图的规模不断扩大,因此提高频繁子图挖掘效率势在必行。本文针对频繁子图挖掘所产生的庞大的结果集,提出了一个最大频繁子图挖掘算法MFME,从而极大地减少了结果集的数量。MFME使用了映射的思想将图集中的边映射到边表中并在此表上进行子图挖掘,有效地提高了算法的效率。实验结果表明,MFME的效率较经典算法SPIN有明显提高。 相似文献
2.
如何从大量的图中挖掘出令人感兴趣的子图模式已经成为数据挖掘领域研究的热点之一。传统的频繁子图挖掘方法对满足最小支持度阈值的子图同等对待,但在真实数据库中不同的子图往往具有不同的重要程度。为解决上述问题,提出了一种深度优先的挖掘加权最大频繁子图的新算法。首先给出了一种新的用于计算图的邻接矩阵规范编码的结点排序策略,大大降低了求图规范编码的复杂度,并可以加速子图规范编码匹配的速度。其次,给出了加权最大频繁子图的定义,不仅可以找出较为重要的最大频繁子图,而且可以使挖掘结果同样具有反单调性,从而可加速剪枝。实验结果表明,提出的算法不仅可以有效地减少挖掘结果的数量,而且具有较高的效率。 相似文献
3.
频繁子图挖掘算法研究 总被引:3,自引:1,他引:2
图像能表达丰富语义,但增加了数据结构的复杂性和感兴趣子结构的挖掘难度。综合应用图论知识和数据挖掘的各种技术,对图像进行规范化编码,通过连接和扩展操作产生所有候选子图,引用嵌入集概念,计算候选子图的支持度和频繁度。提出频繁子图挖掘算法FSubgraphM,能从图数据库中挖掘频繁导出子图。 相似文献
4.
5.
6.
7.
黄鑫 《计算机光盘软件与应用》2012,(17):63-64
化学信息学、生物信息学、医学和社会科学等领域的科学研究的迅速发展积累了大量的图数据,如何从复杂和庞大的图数据中挖掘出有效信息成为数据挖掘领域的热点。通过介绍现阶段图数据挖掘技术的进展,特别是确定图挖掘技术中有代表性的频繁子图挖掘技术研究,讨论并预测了频繁子图挖掘研究的发展趋势。 相似文献
8.
9.
AGM算法最早将Apriori思想应用到频繁子图挖掘中。AGM算法结构简单,以递归统计为基础,但面临庞大的图数据集时,由于存在子图同构的问题,在生成候选子图时容易产生很多冗余子图,使计算时间开销很大。基于AGM算法,针对候选子图生成这一环节对原算法进行改进,减少了冗余子图的生成,使改进后的算法在计算时间上具有高效性;测试了在不同最小支持度情况下改进方法的时间开销。实验结果表明改进算法比原算法缩短了计算时间,提高了频繁子图的挖掘效率。 相似文献
10.
图挖掘是数据挖掘的一个重要研究方向,而图挖掘主要集中在图数据集内频繁子图的挖掘。频繁子图挖掘技术的关键是建立有效机制减少冗余候选子图,以便高效计算和处理所需的频繁子图。提出了一种基于路径的频繁子图挖掘算法,该算法首先找出所有频繁边从而挖掘出频繁单路径,然后通过组合、双射和操作扩展出较多的频繁路径,再通过连接操作产生所有频繁子图候选集。通过定理证明了该算法的正确性和完整性,从理论上分析了该算法时间复杂度低于现有的算法,最后进行了2个图数据集实验,在候选集产生的数量和时间性能2方面验证了算法的优越性。 相似文献
11.
12.
13.
基于FP-tree的最大频繁项目集挖掘算法 总被引:1,自引:0,他引:1
最大频繁项目集挖掘是数据挖掘领域最重要的基本问题之一,在分析已有算法的基础上提出了FP-MMFI算法,它是对FP-growth算法在最大频繁项目集挖掘上的扩展.提出了频繁路径的概念,用它可以有效地对FP-tree进行压缩和缩小搜索空间,同时使用投影的方法对超集检测进行了优化,减少了项目匹配的次数.最后实验结果表明,该算法在性能上优于已有的同类算法. 相似文献
14.
基于改进FP-tree的最大频繁项集挖掘算法 总被引:7,自引:1,他引:7
现有的最大频繁项集挖掘算法在挖掘过程中需要进行超集检测,基于FP-tree的算法需要递归的建立条件频繁模式树,挖掘效率不高.提出了一种基于改进FP-tree高效挖掘最大频繁项集的算法(MMFI).该算法修改了FP-tree结构并采用NBN策略,在挖掘过程中既不需要进行超集检测也不需要递归的建立条件频繁模式树.算法分析和实验结果表明,该算法是一种有效、快速的算法. 相似文献
15.
基于频繁子树挖掘算法中的前缀节点思想,将模式图分为图核—分支—连接向量三个部分,提出了CBE算法。对在分支上扩展得到的候选模式图,CBE算法能够在常数时间内完成规范化判定。通过实验证明CBE算法的子图挖掘效率有显著提高。 相似文献
16.
17.
提出了一种基于DSM MFI算法的改进算法DSMMFI DS算法,它首先将事务数据按一定的全序关系存入DSFI list列表中;然后按排序后的顺序存储到类似概要数据结构的树中;接着删除树中和DSFI list列表中的非频繁项,同时删除窗口衰退支持数大的事务项;最后采用自顶向下和自底向上的双向搜索策略来挖掘数据流的最大频繁项集。通过用例分析和实验表明,该算法比DSM MFI算法具有更好的执行效率。 相似文献