首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
γ-Fe2O3 nanocrystallites dispersed in an amorphous silica matrix have been successfully prepared for the first time by mechanical activation of a chemistry-derived precursor at room temperature. The initial 10 h of mechanical activation triggered the formation of nanocrystallites of Fe3O4 in a highly activated matrix. Increasing the mechanical-activation time led to a phase transformation from Fe3O4 to γ-Fe2O3. The γ-Fe2O3 phase was well established after mechanical activation of the precursor for 30 h. Further increasing the mechanical-activation time to 40 h induced the formation of α-Fe2O3. The mechanical-activation-grown γ-Fe2O3 nanocrystallites were ∼10–12 nm in size and well dispersed in the silica matrix, as observed using TEM. They demonstrated superparamagnetic behavior at room temperature when measured using a Mössbauer spectrometer and a vibrating sample magnetometer (VSM). In addition, the γ-Fe2O3 derived from 30 h of mechanical activation exhibited a value of saturation magnetization as high as 62.6 emu/g.  相似文献   

2.
Preferential X-ray line broadenings in γ-Fe2o3 samples prepared from γ-FeOOH, α-FeOOH, N2H5Fe(N2H3-COO)3-H2O, FeOOCH3, and colloidal Fe3O4 are compared. Isotropic size and small crystallites are the origin of the uniform and enhanced X-ray line broadening in samples derived from hydrazinate and colloidal Fe3O4. Nonuniform line broadening in ex-α-FeOOH and ex-γ-FeOOH is due to an elongated crystallite shape and the presence of stacking faults, respectively. The thermal behavior of samples with low crystallite size and uniform line broadening is characterized by an exothermal recrystallization process simultaneous to the phase transformation γ-Fe203→α-Fe2O3.  相似文献   

3.
Manganese ferrite and α-Fe2O3 particles were precipitated within silicate melt systems to produce very unusual magnetic properties. Assemblies of particles of both kinds behaved super-paramagnetically when the particle size was small enough. As the particle size was increased, the magnetic properties of the ferrite system increased, but those of the α-Fe2O3 system decreased; the latter is expected from Néel's theory of a net spontaneous magnetic moment created by uncompensated magnetic sublattices at very small particle sizes. Liquid-in-liquid phase separation was pronounced in the manganese ferrite-glass systems, which may have influenced the precipitation behavior. Room-temperature initial mass susceptibilities were as high as 2 × 10 −2 cgs, and specific magnetizations as high as 26 gauss/g were observed. Precipitation of α-Fe2O3 particles exhibiting super-paramagnetic behavior was possible only with very low-viscosity melts. Initial mass susceptibility values changed by as much as a factor of 30 between 296° and 77°K.  相似文献   

4.
Subsolidus equilibrium relations in a portion of the system Li2O-Fe2O3-Al2O3 in the temperature range 500° to 1400°C. have been determined near po2 = 0.21. Of particular interest in this system is the LiFe5O8-LiAl5O8 join, which shows complete solid solution above 1180°C. Below this temperature the solid solution exsolves into two spinel phases. At 600°C. approximately 15 mole % of each compound is soluble in the other. The high-temperature solid solution and the low-temperature exsolution dome extend into the ternary system from the 1:5 join. There is no appreciable crystalline solubility of LiFeO2 or of α-Fe2O3 in LiFe5O8. An attempt to confirm HFe5O8 as the correct formulation of the magnetic ferric oxide "γ-Fe2O3" was inconclusive, but in the absence of positive evidence, the retention of γ-Fe2O3 is recommended. All the metallic oxides of the Group IV elements increase the temperature of the monotropic conversion of -γ-Fe2O3 to α-Fe2O3. Silica and thoria have a greater effect on this conversion than does titania or zirconia.  相似文献   

5.
Synthesis of monodispersed nanophase α-Fe2O3 (hematite) powder to be used as a red pigment in porcelains was investigated using microwave-hydrothermal and conventional-hydrothermal reactions using 0.018 M FeCl3·6H2O and 0.01 M HCl solutions at 100°–160°C. Acicular and yellow β-FeOOH (akaganite) particles 300 nm in length and 40 nm in thickness were dominantly formed at 100°C after 2–3 h, while spherical α-Fe2O3 particles 100–180 nm in diameter were preferentially formed after 13 h using a conventional-hydrothermal reaction. However, a microwave-hydrothermal reaction at 100°C led to monodispersed and red α-Fe2O3 particles 30–66 nm in diameter after 2 h without the formation of β-FeOOH particles. In this paper, the effect of microwave radiation during hydrothermal treatment at 100°–160°C on the formation yield, kinetics, morphology, phase type, and color of α-Fe2O3 was investigated.  相似文献   

6.
The oxygen content of Ni0.685Zn0.177Fe2.138O4+γ was determined gravimetrically at atmospheric pressure in varying Po2 , 3.5 × 10−4 to 1.0 atm at 600° to 1450°C. The phase boundary associated with the precipitation of α-Fe2O3 was determined from the change in slope of γ vs T plots observed on heating. Metastability is particularly evident for curves observed on cooling. Isacompositional lines (0.002 < γ < 0.045) are shown on a plot of log PO2 vs 1/T. An enthalpy of -21.6 kcal/mol is calculated for the oxidation of Fe2+.  相似文献   

7.
Addition of α-Fe2O3 seed particles to alkoxide-derived boehmite sols resulted in a 10-fold increase in isothermal rate constants for the transformation of γ- to α-Al2O3. Changes in porosity and surface area with sintering temperature showed no effect of seeding on coarsening of the transition alumina gels, but the 200-fold decrease in surface area associated with transformation to α-Al2O3 occurred ∼ 100°C lower in seeded gels compared with unseeded materials. As a result of high nucleation frequency and reduced microstructure coarsening, fully transformed seeded alumina retained specific surface areas >22 m2/g and exhibited narrow pore size distributions, permitting development of fully dense, submicrometer α-Al2O3 at ∼ 1200°C.  相似文献   

8.
Defect structure of fine-grained γ-Fe2O3 powder obtained by dehydroxylation of y-FeOOH powder has been studied by X-ray diffraction and high-resolution electron micrographs. An anomalous X-ray line broadening was observed in the γ-Fe2O3 powder. It is found that the X-ray line breadth is dependent on the crystal structure factors of each reflection line: the reflections from net planes consisting of only metal ions on tetrahedral sites and octahedral sites of spinel structure are much broader than those from net planes including oxygen ions. The anomalous X-ray line broadening is explained on the basis of stacking faults in the spinel structure.  相似文献   

9.
The defect structure, δ-Fe2O3, was grown epitaxially with ultrafine, activated Al2Si2O5(OH)4. More uniform particle size and consistent structure result with this process than with auto-nucleation. The low ferrimagnetic character is influenced by precipitation parameters. Magnetic properties and crystal order can be promoted by a novel thermal conversion process using a high-boiling aliphatic hydrocarbon. The process induces the formation of a more complex iron oxide. A structure is believed to form of an order higher than δ-Fe2O3 but lower than γ-Fe2O3. Analyses (C, H, CO2, and H2O) are correlated with magnetic properties. Specimens having a mean particle size of 20 mμ were produced with coercivities up to 290 oe and remanent inductions up to 1800 gauss/cm3. Stability tests over a five-year period showed no degradation.  相似文献   

10.
Oxygen diffusion coefficients have been determined for polycrystalline samples of NiCr2O4 and α-Fe2O3 by exchange measurements with oxygen gas containing the stable isotope18O, using mass spectrometer analysis. Oxygen diffusion in NiCr2O4 can be represented by the equation D = 0.017 exp (-65,400/RT); oxygen diffusion in α-Fe2O3 can be represented by the equation D = 1 × 1011 exp (-146,000/RT). The large difference between D0 and activation energy for these materials suggests that different diffusion mechanisms are involved.  相似文献   

11.
To produce a new red pigment for Japanese porcelains, some hematite (α-Fe2O3) powders produced by different methods were investigated by mixing them with lead-free frit powders and firing them on white porcelain plates at 800°C. Commercial hematite powders and uniform α-Fe2O3 powders 155 and 53 nm in diameter which were prepared using conventional- and microwave-hydrothermal reactions, respectively, were used as sources of red pigments. The morphology and dispersion of the above α-Fe2O3 powders were found to have a significant effect on the tone of red color for porcelain pigment.  相似文献   

12.
Nanostructured Al2O3 powders have been synthesized by combustion of aluminum powder in a microwave oxygen plasma, and characterized by X-ray diffraction and electron microscopy. The main phase is γ-Al2O3, with a small amount of δ-Al2O3. The particles are truncated octahedral in shape, with mean particle sizes of 21–24 nm. The effect of reaction chamber pressure on the phase composition and the particle size was studied. The γ-alumina content increases and the mean particle size decreases with decreasing pressure. No α-Al2O3 appears in the final particles. Electron microscopy studies find that a particle may contain more than one phase.  相似文献   

13.
The growth of α-Al2O3 from a planar specimen of thermally grown γ-alumina on a molybdenum transmission electron microscope grid was studied. The α-Al2O3 grows into the transition alumina matrix and then thickens via a ledge growth mechanism. Faceted Mo crystallites cause pinning of α-Al2O3 ledges and are larger on α-Al2O3 than on the transition alumina matrix.  相似文献   

14.
Nanocrystalline pure α-Fe2O3 powder, with an average particle size of 35 nm, has been synthesized by using an aqueous solution-based synthetic route. DC electrical resistivity of the synthesized material was measured with respect to temperature by the two-probe method from 28° to 225°C. Room temperature resistivity of the nanopowder was ∼108Ω·cm. Magnetic hysteresis measurement revealed that the synthesized α-Fe2O3 nanopowder exhibited ferromagnetic behavior at room temperature. The hysteretic features are high saturation magnetization of 5.1 emu/g, high remanence of 2.2 emu/g, and coercivity of 200.5 Oe.  相似文献   

15.
Thermal reactions in 93% Al2O3-7% MgO and 95.8% Al2O3-4.2% MgO gels seeded with α-Al2O3, MgAl2O4, α-Fe2O3, and SiO2, sols were investigated by differential thermal analysis to determine the extent of nucleation catalysis of solid-state reactions. Seeding with α-Al2O3 lowered the α-Al2O3 crystallization temperature in these xerogels by 100° to 150°C. Spinel seeds have much less effect on the γ-α transition, and α-Fe2O3 and SiO2 seeds do not affect it significantly. Isostructural seeding of gels may therefore permit lower ceramic processing temperatures.  相似文献   

16.
The microstructure and humidity-sensitive characteristics of α -Fe2O3 porous ceramic were investigated. Microporous α -Fe2O3 powders were obtained by controlling the topotactic decomposition reaction of α -FeOOH. Water vapor adsorption thermogravimetrical experiments were carried out in the relative humidity (rh) range 0% to 95% on the α -Fe2O3 powder and the 900°C sintered compact. The microstructure was investigated by SEM, TEM, Hg intrusion, and N2 adsorption porosimetry techniques. The humidity sensitivity was investigated by the impedance measurements technique in 0% to 95% rh on the compacts sintered at 50°C steps in the 850° to 1100°C range. Humidity response was found to be affected by the microstructure, i.e., the characteristics of the precursor powders and sintering temperatures.  相似文献   

17.
The effect of Cr and Fe in solid solution in γ-Al2O3 on its rate of conversion to α-Al2O3 at 1100°C was studied by X-ray diffraction. The δ form of Al2O3 was the principal intermediate phase produced from both pure γ-Al2O3 and that containing Fe3+ in solid solution, although addition of Fe greatly reduced crystallinity. Reflectance spectra and magnetic susceptibilities showed that Cr exists as Cr6+ in γ-Al2O3 and as Cr3+ in α-Al2O3, with θ-Al2O3 as the intermediate phase. The intermediates formed rapidly, and the rates of their conversion to α-Al2O3 were increased by 2 and 5 wt% additions of Fe and decreased by 2 and 4 wt% additions of Cr. An approximately linear relation observed between α-Al2O3 formation and decrease in specific surface area was only slightly affected by the added ions. This relation can be explained by a mechanism in which the sintering of δ- or θ-Al2O3, within the aggregates of their crystallites, is closely coupled with conversion of cubic to hexagonal close packing of O2- ions by synchro-shear.  相似文献   

18.
Since the difference between oxygen-ion and cation diffusion coefficients is greater for α-Cr2O3 than for α-Fe2O3 or α-Al2O3, a study of initial-sintering kinetics was undertaken to show unequivocally which species is rate controlling. Fine powders of α-Cr2O3, obtained by thermal decomposition of reagent-grade (NH4)2Cr2O7, were lightly compacted and their isothermal rates of shrinkage were determined between 1050° and 1300°C. Resultant data follow volume-diffusion sintering models, and calculated diffusion coefficients agree with, those measured for oxygen ions in α-Cr2O3. There is little evidence that oxygen diffusion along grain boundaries becomes so enhanced that chromium ions are left in control of the process.  相似文献   

19.
Computer-modelling techniques are applied to the calculation of defect formation and migration energies in α-Fe2O3 and α-Cr2O3: both electronic and lattice defects are considered. The results are used to predict Arrhenius energies for cation and anion migration in different composition and temperature regimes and show reasonable agreement with experimental data where these are available.  相似文献   

20.
An experimental study has been conducted to evaluate the formation of nano α-Al2O3 under various conditions, such as different calcining temperatures and emulsion ratios of aqueous aluminum nitrate solutions and oleic acid with a high-speed stirring mixer. Four batches of the precursor powders were calcined at three different temperatures of 1000°, 1050°, and 1100°C for 2 h and a terminal product of nano α-Al2O3 powders was obtained. The products have been identified by X-ray diffraction (XRD), specific surface area measurement scanning electron microscope, and transmission electron microscope (TEM). The XRD results show that the phase of powders is determined to be α-Al2O3, indicating that the overall process has been effective. The optimum calcination temperature of the precursor powder for crystallization of nano α-Al2O3 was found to be 1000°C for 2 h. The TEM image indicates that the particle grains have a sub-spherical shape with a mean size of 50–100 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号