首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
生物降解高分子材料   总被引:5,自引:0,他引:5  
综述了近20年来国内外生物降解高分子材料的研究进展及试验评价方法,初步探讨了生物降解的机理,并对现存的几个问题及开发前景提出了几点看法。  相似文献   

2.
简要介绍了生物降解高分子材料的定义、分类和降解机理,较为全面地阐述了当前生物降解高分子材料的应用领域,并对其发展前景作出展望。  相似文献   

3.
生物降解性高分子材料   总被引:15,自引:0,他引:15  
李勇进  王公善 《上海化工》1998,23(14):30-33
简述了生物降解性高分子的生物降解机理,阐述了影响高分子材料生物降解的因素,重点介绍了生物降解 性高分子研究现状。  相似文献   

4.
生物降解高分子材料   总被引:12,自引:2,他引:12  
简要介绍生物降解高分子材料的定义、降解机理及影响因素的基础上,较为全面的阐述了当前生物降解高分子材料的应用领域  相似文献   

5.
《橡塑化工时代》2006,18(12):6-6
塑料材料的大量应用,在给人们的生活带来许多方便的同时,也造成了许多困扰。而从根本上解决这一难题的途径就是生产可降解塑料等。可以预见,在21世纪降解性高分子材料将会取得长足发展,成为高分子工业不可分割的部分。  相似文献   

6.
高分子材料难以自然降解,会造成环境污染。可生物降解高分子材料在其使用寿命后,可以自行降解,是未来高分子材料发展的重要方向之一。简要介绍了生物降解高分子材料及其分类,探讨了可生物降解材料的降解机理、影响材料生物降解的因素和生物降解材料的制备方法、评价方法、研究与应用概况,并指出了可生物降解高分子材料未来发展的方向。  相似文献   

7.
生物降解性高分子材料   总被引:6,自引:0,他引:6  
本文综述了国内外生物降解高分子材料的研究现状和发展方向,分析了国内外生物降解研究和生产中存在的几个问题,结合我国的国情,对我国未来生物降解高分子的研究和发展提出了几点建议。  相似文献   

8.
高分子材料在国民经济各部门已普遍应用,同时又带来严重的环境污染,研究环境友好材料就愈发迫切。生物降解材料以其生物降解性好、机械性能优良及原料丰富而倍受青睐!本文简要介绍生物降解高分子材料的定义、分类、降解机理及影响因素,在此基础上阐述当前生物降解材料在医药、农业及包装等领域的应用。  相似文献   

9.
介绍了高分子材料生物降解机理,概述了生物降解材料的研究和应用情况,并展望了将来的研究方向。  相似文献   

10.
可生物降解高分子材料研究进展   总被引:7,自引:0,他引:7  
简要说明了可生物降解高分子的降解机理及其种类,介绍了可生物降解高分子材料及其在生物医药方面的应用。表明可生物降解高分子具有良好的应用前景。  相似文献   

11.
生物降解高分子材料在医药领域中的应用   总被引:7,自引:0,他引:7  
简要介绍了生物降解高分子材料的定义、分类和降解机理,较为全面地阐述了当前生物降解高分子材料的应用领域,特别是在缓/ 控释材料、手术缝合线及组织工程中的应用。  相似文献   

12.
本文综述了国内外生物降解高分子材料的研究现状和发展方向,分析了国内外生物降解研究和生产中存在的几个问题,结合我国的国情,对我国未来生物降解高分子的研究和发展提出了几点建议。  相似文献   

13.
二氧化锰具有资源丰富、成本廉价、电化学性能优良等优点,被广泛应用于电催化、电化学储能、生物医学和电致变色器等领域。本文综述了二氧化锰作为电极材料在电催化领域的最新研究进展,包括催化析氧、催化析氢、氮还原、尿素氧化、二氧化碳还原、醇氧化等;总结归纳了二氧化锰的结构特征及其合成方法;系统分析了二氧化锰晶型、微观形貌、电子结构与催化性能间的构效关系及其在构筑高效催化电极材料方面的应用及性能优化策略;结合当前研究存在的问题,展望了二氧化锰基催化电极材料的发展方向。  相似文献   

14.
系统论述了生物降解聚乳酸(PLA)合金复合材料的最新研究进展,着重介绍了聚乳酸合金中有巨大商用潜力的完全生物基降解高分子合金体系:PLA/淀粉合金、PLA/纤维素合金、PLA/聚ε-己内酯合金、PLA/聚酰胺合金、PLA/聚羟基脂肪酸酯合金、PLA/壳聚糖合金及PLA/稀土多元复合材料等。并提出利用稀土离子独特的4f电子亚层能级的空轨道与聚乳酸生物基复合材料中的羰基、羟基等含氧官能团配位来改善聚乳酸合金复合材料的综合性能,这为设计开发新型稀土-聚乳酸复合材料提供了新的思路,为聚乳酸产业化进程提供新的契机。  相似文献   

15.
As process engineering has matured, research interest has shifted towards polymer product quality. In the past 20 years or so, the shift has progressed even further, as interest in polymer product quality has morphed into polymer product design. Product design is intended to be a targeted pursuit of optimal conditions that will yield polymers with desirable properties for a specific application. This can be achieved by following a systematic design framework that employs sequential, iterative steps informed by prior knowledge and experience. This overview provides some background information regarding the need for design (including some examples from previous experience), especially in terms of structure‐property relationships. When links between kinetics (synthesis conditions), polymer structure, and application properties are well‐understood, it becomes possible to essentially reverse‐engineer the polymeric material; the researcher can start with known application requirements and synthesize polymers with tailor‐made properties using an optimized recipe (according to the polymerization kinetics). A suggested design approach is presented herein, followed by the application of the design approach to two large case studies. The number of applications for polymeric materials is essentially limitless; the current work provides typical examples of a systematic polymeric material design framework (and related case studies).  相似文献   

16.
In this study, the durability of poly(butylene succinate) (PBS), poly(butylene adipate‐co‐terephthalate) (PBAT), and PBS/PBAT blend was assessed by exposure to 50°C and 90% relative humidity for a duration of up to 30 days. Due to the easy hydrolysis of esters, the mechanical properties of PBS and PBAT were significantly affected with increasing conditioning time. The PBS, PBAT, and PBS/PBAT showed an increase in modulus as well as a decrease in tensile strength and elongation at break with increased exposure time. Furthermore, the impact strength of PBAT remains unaffected up to 30 days of exposure. However, it was clearly observed that the fracture mode of PBS/PBAT changed from ductile to brittle after being exposed to high heat and humid conditions. This may be attributed to the hydrolysis products of PBS accelerating the degradation of PBAT in the PBS/PBAT blend. The differential scanning calorimetry results suggested that the crystallinity of the samples increased after being exposed to elevated temperature and humidity. This phenomenon was attributed to the induced crystallization from low molecular weight polymer chains that occurred during hydrolysis. Therefore, low molecular weight polymer chains are often favored to the crystallinity enhancement. The increase in crystallinity eventually increased the modulus of the conditioned samples. The enhanced crystallinity was further confirmed by polarizing optical microscopy analysis. Moreover, the hydrolysis of the polyesters was evaluated by scanning electron microscopy, rheology, and Fourier transform infrared spectroscopy analysis. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42189.  相似文献   

17.
可生物降解聚氨酯材料具有良好的生物相容性、机械强度好、易加工等特点,在医学中应用十分广泛。本文综述了可生物降解聚氨酯材料在医学上的应用、研究进展并对聚氨酯的组织相容性、血液相容性及降解性能进行了讨论,展望了其在医学中的发展前景。  相似文献   

18.
Copolymer of acrylamide with N‐benzyl‐4‐vinylpyridinium chloride (PAAM‐co‐BVP) produced coagulation and sedimentation of Escherichia coli, Bacillus subtillus, Pseudomonas aeruginosa, and Staphylococcus aureus. Addition of more than 50 mg L?1 of PAAM‐co‐BVP produced bacterial flocks that precipitated at a rate of around 200 cm h?1. Supernatant population reduced in the range 1/30,000–1/25,000,000. Reduction of supernatant population was most effective when about 200 mg L?1 of PAAM‐co‐BVP was added. PAAM‐co‐BVP was highly biodegradable and the half‐life estimated was 2.4 days when treated with activated sludge. The ratio of biochemical oxygen demand for 5 days (BOD5) to total organic carbon (TOC) was 0.607. Coagulation and sedimentation of bacteria using PAAM‐co‐BVP is expected to improve the water disinfection processes by saving chlorine and other hazardous chemical fungicides and by reducing the formation of trihalomethanes and other toxic chemical materials. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1618–1623, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号