首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To carry out a comparative assessment of a recently proposed idea of using thermal flow-reversal reactors (TFRR) for mine ventilation air, the results for the catalytic flow-reversal reactor (CFRR) investigated within the European Project (2003) are briefly presented. Next, experimental investigations of thermal combustion are presented in this paper. These consisted of the kinetic study of homogeneous combustion in the pelletized bed and in the monolith. Kinetic equations for the two cases are derived and discussed. Experimental autothermal reverse-flow operation in a laboratory setup was performed. Due to the high heat capacity of the wall and insulation of the pelletized bed reactor, with considerable heat losses to the surroundings, autothermal operation was successful only in the monolithic reactor. It is finally concluded that the thermal combustion can be competitive compared with the catalytic oxidation.  相似文献   

2.
This paper describes a parametric study of a catalytic flow reversal reactor used for the combustion of lean methane in air mixtures. The effects of cycle time, velocity, reactor diameter, insulation thickness, thermal mass and thermal conductivity of the inert sections are studied using a computer model of the system. The effects on the transient behaviour of the reactor are shown. Emphasis is placed on the effects of geometry from a scale-up perspective. The most stable system is obtained when the thermal mass of the inert sections is highest, while thermal conductivity has only a minor effect on reactor temperature. For a given operation, the stationary state depends on the combination of velocity and switch time. Provided that complete conversion is achieved, highest reactor temperature is achieved with the highest switch time. The role of the insulation is not only to prevent heat loss to the environment, but also to provide additional thermal mass. During operation heat is transfer to and from the insulation. The insulation effect leads to higher reactor temperature up to a maximum thickness. The insulation effect diminishes as the reactor diameter increases, and results in higher temperatures at the centreline.  相似文献   

3.
This work is focused on the application of reverse flow reactors to the combustion of lean mixtures of aliphatic and aromatic hydrocarbons in air. For this purpose, hexane and toluene were chosen as model compounds. The combustion of binary mixtures of these compounds (up to 500 ppmV total hydrocarbon concentration) over a commercial Pt/Al2O3 catalyst in reverse flow reactors has been studied both experimentally, in a bench-scale unit, and by simulations, using a heterogeneous mono-dimensional dynamic model, good correspondence being observed between both approaches.As general trend, it was observed that the behaviour of the reactor is determined mainly by the combustion enthalpies and reactivities of toluene and hexane. Hence, increasing total concentration and increasing fraction of toluene (the most reactive compound) lead to more stable operation. Regarding the kinetic inhibition effects, in the conditions studied no influence on the reactor performance was observed, probably because the hydrocarbons combust in different reactor zones. This behaviour can be extended to the combustion of aromatic and C5-C8 alkanes, characterised by their relatively low concentrations (determined by their vapour pressure) and high reaction rates.  相似文献   

4.
The effect of oscillations in the bulk flow on the axial dispersion coefficient in packed beds of spherical particles has been studied using the imperfect pulse tracer method with two probes located within the bed. Three bed sizes with diameters in the range 25-47.3 mm have been used with oscillation frequencies and amplitudes in the range 0-2.4 Hz and 0-3.5 mm, respectively. In the absence of oscillations, the axial dispersion coefficient increases linearly with interstitial velocity. For a given bulk velocity and oscillation frequency, the axial dispersion coefficient-amplitude relationship shows a minimum. Over the ranges of conditions studied, the best reduction (up to 50%) in the axial dispersion coefficient from the non-oscillation base case occurred at the highest frequency studied and when the wall effect was the greatest, i.e. when the column-to-particle size was the smallest. The axial dispersion coefficient was fitted to a mathematical model, which takes into account the diameters of both the column and the packing, the fluid velocity, and the oscillation intensity (frequency and amplitude). The model was adapted from those developed by Göebel et al. (1986) and Mak et al. (1991) so as to need no a priori assumptions about the relationship between oscillation parameters and the axial dispersion coefficient. The model provides near-perfect fits to the experimental data for the higher frequencies studied.  相似文献   

5.
A staged linear model, containing five parameters, is developed to compare equivalent simulated moving bed chromatographic reactors (SMBCR) and reverse flow chromatographic reactors (RFCR). A first order reversible reaction and linear adsorption equilibrium, with preferential adsorption of the reactant is assumed. The analysis uses simple, easily computable analytical solutions that rigorously represents the transients in the cyclic steady state for both the RFCR and the SMBR. A comparison between the two types of reactors is carried out to determine the maximum conversion attainable and the range of operation where these systems have advantages over conventional steady state reactors. It is found that the maximum conversion of both reactors is similar. The range of operation in terms of amount of catalyst and range of switching times favors the RFCR, while the conversion at low separation factors favors the SMBCR.  相似文献   

6.
张尚  杨剑  王秋旺 《化工学报》2020,71(z2):24-31
颗粒堆积床作为反应器和分离器等的重要组成广泛应用于实际化学工业生产中。基于传统的有序堆积结构,提出了一种新型格栅支撑有序堆积结构,通过采用新型格栅支撑结构可以快速构建有序颗粒堆积床,其中包括格栅支撑简单立方、格栅支撑体心立方、格栅支撑疏松面心立方和格栅支撑密实面心立方颗粒堆积结构。对4种颗粒堆积单元通道内的流动换热进行模拟研究后发现,不同堆积形式的格栅支撑颗粒堆积床流动换热性能不同;在相同的面心立方堆积形式下,使用不同的格栅支撑结构,其流动传热也有明显差异;与传统有序堆积结构相比,在换热相差不多的情况下,格栅支撑有序堆积结构的压降减小,所以其综合换热效率有明显提升。  相似文献   

7.
Packed beds of particles are widely used in chemical industrial production as core units of fixed bed reactors, dryers, filters and other equipment. Based on traditional structured packed beds, this paper proposes some novel grille-support structured packed beds. The novel grille-support packed beds can be quickly constructed by using the new grille, including grille-support simple cubic (G-SC), grille-support body center cubic (G-BCC), grille-support loose face center cubic (G-LFCC) and grille-support compact face center cubic (G-CFCC) packing. In this paper, the flow and heat transfer characteristics of grille-support structured packed beds are numerically studied. Results show that, the packed beds with different packing forms have diverse flow and heat transfer performance. Under the same face center cubic packing form, the flow and heat transfer could be also significantly different with disparate grilles. It is also revealed that, compared with the traditional structured packed bed, the pressure drop of the grille-support structured packed bed is reduced while the heat transfer coefficient is similar, so the overall heat transfer efficiency is notably improved.  相似文献   

8.
An important decision in the design of fluidized bed reactors is which of several flow regimes to choose. Almost all fluidized bed reactor models are restricted to a single flow regime, making comparison difficult, especially near the regime boundaries. This paper examines the performance of fluidized bed methane reformers with three models—a simple equilibrium model and two kinetic distributed models, based on different assumptions of varying sophistication. Membranes are incorporated to improve reactor performance. Eighteen cases are simulated for different flow regimes and membrane configurations. Predictions for the fast fluidization and turbulent flow regimes show that the rate-controlling step is permeation through the membranes. Bubbling regime simulations predict somewhat less hydrogen production than for turbulent and fast fluidization, due to the effects of interphase crossflow and mass transfer. Overall reactor performance is predicted to be best under turbulent fluidization operation. Practical considerations also affect the advantages, shortcomings and ultimate choice of flow regime.  相似文献   

9.
Flow maldistribution in either a bench-scale or commercial scale packed bed is often responsible for the failure of the scale down unit to mimic the performance of the large reactor. The modeling of multiphase flow in a bench-scale unit is needed for proper interpretation of reaction rate data obtained in such units. Understanding the mechanism of flow maldistribution is the first step to avoiding it. In order to achieve this objective, computational fluid dynamic (CFD) simulations of multiphase flow under steady state and unsteady state conditions in bench-scale cylindrical and rectangular packed beds are presented for the first time. The porosity distribution in packed beds is implemented into CFD simulation by pseudo-randomly assigned cell porosity values within certain constraints. The flow simulation results provide valuable information on velocity, pressure, and phase holdup distribution.  相似文献   

10.
A mathematical model was developed and numerical modeling of a heat transfer process in a set of plane-parallel plates was performed. Basic conditions were defined, at which a non-stationary process of heat transfer proceeds as dissipating heat waves. The influence of chemical reaction (the endothermic processes of cyclic hydrocarbons dehydrogenation, conversion of methane and decomposition of ammonia) on the wave mode of heat distribution in the catalyst unit was investigated. The optimal values of some parameters influencing the process of heat transfer were defined.  相似文献   

11.
The applicability of a catalyst based on copper dispersed on γ-Al2O3 spheres (1 mm diameter) for fluidized bed catalytic combustion of methane has been assessed. Catalyst properties have been determined by physico-chemical characterization techniques and fixed bed activity tests revealing the presence of a surface CuAl2O4 spinel phase, still active and stable in methane combustion after repeated thermal ageing treatments at 800 °C. Methane catalytic combustion experiments have been performed in a 100 mm premixed fluidized bed reactor under lean conditions (0.15–3% inlet methane concentration), showing that complete CH4 conversion can be attained below 700 °C in a fluidized bed of 1 mm solids with a gas superficial velocity about twice the incipient fluidization velocity.  相似文献   

12.
In this work, the performance of a simple logic-based controller for a reverse flow reactor (RFR) has been tested experimentally. The controller is a hybrid system using the inside reactor temperature as the controlled variable, and the switch of the flow direction as the manipulated variable. Three different control logic rules (depending on the point selected to measure the inside reactor temperature) have been compared for the catalytic combustion of methane in a bench-scale RFR unit. A procedure for tuning the controllers was established. The controller that measures the temperature in the middle of the reactor showed the best performance, as it provided complete methane conversion with high capacity to overcome both low and high feed concentration disturbances.  相似文献   

13.
Mixing and circulation of monosized particles in laboratory-scale tapered spouted beds have been characterized experimentally by measuring non-invasively the 3-D trajectory of a single tracer via a radioactive velocimetry technique. Processing the obtained Lagrangian trajectory allowed determination of the mixing dynamics in the longitudinal, radial and circumferential directions, of the return length and return time distributions, and of the mean Eulerian flow fields. A conceptual solids flow structure has been delineated. A four-zone 2-D axisymmetrical Monte Carlo model has been developed for emulating the elementary steps in play in the longitudinal mixing, i.e., the direction of slowest mixing, and in the return (or circulation) time and length of the solids phase. The four-zone solids flow structure is viewed as: (i) a spout region with a constant upward particle velocity, (ii) an annulus region above the conical base with a downward velocity radial profile, (iii) an annulus region within the conical base where the linear velocity, considered to be parallel to the cone wall, is equal to that of the incoming particles, (iv) a fountain in which the particle movement is characterized by the particle residence time, an exiting radius, and an average fountain height. The model proved successful in restoring the measured return time and return length distributions, and the mixing response curves.  相似文献   

14.
A comprehensive two-dimensional heterogeneous reactor model was developed to simulate the flow behavior and catalytic coupling reaction of carbon monoxide (CO)–diethyl oxalate (DEO) in a fixed-bed reactor. The two-temperature porous medium model, which was revised from a one-temperature porous medium model, as well as one equation turbulent model, and exponent-function kinetic model was constructed for the turbulent velocity scale comparing with laminar flow and simulation of the catalytic coupling reaction. The simulation results were in good agreement with the actual data collected from certain pilot-plant fixed bed reactors in China. Based on the validated approach and models, the distributions of reaction parameters such as temperature and component concentrations in the reactor were analyzed. The simulations were then carried out to understand the effects of operating conditions on the reactor performance which showed that the conduction oil temperature in the reactor jacket and the CO concentration are the key impact factors for the reactor performance.  相似文献   

15.
A novel two-stage catalyst bed reactor was constructed comprising of the 5%Na2WO4-2%Mn/SiO2 particle catalyst and the 5%Na3PO4-2%Mn/SiO2/cordierite monolithic catalyst. The reaction performance of the oxidative coupling of methane (OCM) in the two-stage bed reactor system was evaluated. The effects of the bed height and operation mode, as well as the reaction parameters such as reaction temperature, CH4/O2 ratio and flowrate of feed gas on the catalytic performance were investigated. The results indicated that the two-stage bed reactor system exhibited a good performance for the OCM reaction when the feed gases were firstly passed through the particle catalyst bed and then to the monolithic catalyst bed. The CH4 conversion of 32.6% and C2 selectivity of 67.5% could be obtained with a particle catalyst bed height of 10 mm and a monolithic catalyst bed height of 50 mm in the two-stage bed reactor. Both of the CH4 conversion and C2 selectivity have been increased by 4.8% and 2.5%, respectively, as compared with the 5%Na2WO4-2%Mn/SiO2 particle catalyst in a single-bed reactor and by 7.7% and 16.1%, respectively, as compared with the 5%Na3PO4-2%Mn/SiO2/cordierite monolithic catalyst in a single-bed reactor. The catalytic performance of the OCM in the two-stage bed reactor system has been remarkably improved. The TPR results indicate the high temperature reduction oxygen species in the monolithic catalyst might be favorable to the formation of C2 products.  相似文献   

16.
Using an illustrative sphere packing assembly, it is demonstrated that flow structure and wall heat transfer patterns in low aspect ratio fixed bed reactors are more realistically modelled by properly accounting for the discrete void fraction variations. A 3D network-of-voids (NoV) model has been devised to characterise and examine the discrete flow and heat transfer phenomena in a low aspect ratio packed bed with dt/dp = 1.93. The model as formulated is deliberately designed to be not too complicated so as not to place severe demands on computational resources. Hence, the model can potentially easily be applied to simulate the typically large sets of tubes (often comprising more than 10,000) in the case of industrial multi-tubular reactors, where every tube is different due to the random insertion of the packing particles. Because of its simplicity, the model offers an opportunity of coupling the individual catalyst pellet level transport with the complex interstitial flows at the reactor scale. Illustrative studies of this NoV model on a random packed bed of spheres predict large variations of discrete in-void angular velocities and consequently wall heat transfer coefficients within a single tube. The wide variations of wall heat transfer coefficients imply that the different angular sections of the tube will transfer heat at radically different rates resulting in potentially large temperature differences in different segments of the tube. This may possibly result in local temperature runaway and/or hot spot development leading to several potentially unanticipated consequences for safety and integrity of the tube and hence the reactor. The NoV model predictions of the overall pressure drop behaviour are shown to be consistent with the quantitative and qualitative features of correlations available in the literature.  相似文献   

17.
18.
刘易  武威  罗勇  初广文  邹海魁  陈建峰 《化工学报》2019,70(10):3663-3676
旋转填充床反应器是一种典型过程强化装置,对化工过程中的传质与混合过程具有较好的强化作用。流体流动作为旋转填充床反应器中最为基础的性质,对研究、优化旋转填充床反应器的结构和性能至关重要。光学成像技术与数值模拟作为研究旋转填充床反应器中流体力学性质的重要手段在近年来得到了飞速发展。对近三十年来,旋转填充床反应器可视化研究进行了综述,从早期光学成像开始,在此基础上引入早期计算流体力学模拟,直至现在高速数码摄像可视化和基于真实结构的模拟。对旋转填充床的可视化观测从填料表面逐渐向填料内部发展,对其数值模拟从初步的数学模型发展到包含详细填料几何结构、详细流体特性的流动模拟。现有研究已对填料区、空腔区中的流体流动有了较为详细的描述。  相似文献   

19.
A two-dimensional (2D) pseudo-homogeneous reactor model was developed to simulate the performance of fixed-bed reactors for catalytic coupling reaction of carbon monoxide to diethyl oxalate. Reactor modeling was performed using a comprehensive numerical model consisting of two-dimensional coupled material and energy balance equations. A power law kinetic model was applied for simulating the catalytic coupling reaction with considering one main-reaction and two side-reactions. The validity of the reactor model was tested against the measured data from different-scale demonstration processes and satisfactory agreements between the model prediction and measured results were obtained. Furthermore, detailed numerical simulations were performed to investigate the effect of major operation parameters on the reactor behavior of fixed bed for catalytic coupling reaction of carbon monoxide to diethyl oxalate, and the result shows that the coolant temperature is the most sensitive parameter.  相似文献   

20.
不同圆球复合无序堆积床内流动传热数值分析   总被引:3,自引:1,他引:3       下载免费PDF全文
吴江权  杨剑  周浪  王秋旺 《化工学报》2015,66(Z1):111-116
圆球堆积床内孔隙分布影响其内部流场及温度场分布, 且小管径-球径比堆积床由于壁面限制, 内部孔隙率变化剧烈, 其内部流动和传热不均匀现象明显。针对D/dp为3的圆球无序堆积床构建了3种非等直径圆球复合堆积结构:径向分层复合堆积、轴向分层复合堆积以及随机复合堆积结构, 并采用DEM-CFD方法建模计算, 从径向及整体角度分析比较不同复合堆积床内流动换热特性及其流场和温度场分布的均匀性。结果表明:孔隙率及孔隙大小分布共同影响堆积床内流场和温度场分布;相对于单一等直径圆球堆积, 采用复合堆积结构能使堆积床内部孔隙率分布更均匀, 其内部流场和温度场分布也更为均匀;对于D/dp为3的堆积通道, 径向分层堆积结构对于提高整体流动换热性能及改善内部流动换热均匀性都有显著效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号