首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fourier transform infrared spectroscopy (FT-IR) can discriminate Escherichia coli O157:H7 ATCC 35150 from other bacteria: E. coli ATCC 25522, Bacillus cereus ATCC 10876, and Listeria innocua ATCC 51742 inoculated in to apple juice. Spectra of bacterial suspensions (ca. 10(9) cfu/ml in 0.9% NaCl) on Anodisc (aluminum oxide) filters were tested. Unique FT-IR vibrational combination bands from mid-IR active components of bacterial cells are present in the "fingerprint region" at wavenumbers between 1500 and 800 cm(-1). Principal component analysis (PCA) revealed clear segregations between different bacterial strains. Also, soft independent modeling of class analogy (SIMCA) correctly classified E. coli O157:H7 ATCC 35150 from E. coli ATCC 25522 at an 82% confidence level; whereas a 77% confidence level was obtained when using SIMCA to classify E. coli O157:H7 from three other bacterial strains.  相似文献   

2.
Alicyclobacillus spp. are thermoacidophilic, spore-forming bacteria. Some of which cause spoilage in pasteurized and heat-treated apple juice products through the production of guaiacol. Fourier transform infrared (FT-IR) spectroscopy was used to discriminate between eight Alicyclobacillus strains (WAC, 81-2, Oly#21, 51-1, KF, 1016, 1101, and A-Gala A4) in apple juice. FT-IR vibrational combination bands reflected compositional differences in the cell membranes of Alicyclobacillus strains in the "fingerprint region" at wavenumbers between 1500 and 800 cm(-1). Distinctive segregation among spectral sample clusters of different Alicyclobacillus strains was observed using principal component analysis (PCA). Two closely related strains (1016 and 1101) of Alicyclobacillus acidoterrestris could be distinguished, suggesting that this method can be highly selective. Results of soft independent modeling of class analogy (SIMCA) demonstrated that guaiacol-producing and non-guaiacol producing Alicyclobacillus strains could be differentiated up to 89% of the time. This technique may provide a tool for fruit juice producers to detect Alicyclobacillus rapidly and to monitor and control guaiacol formation.  相似文献   

3.
根据Genbank公布的酸土脂环酸芽孢杆菌(Alicyclobacillus acidoterrestris DSM 3922T)鲨烯环化酶序列自行设计一对引物,利用微波技术直接从果汁样品中提取目标菌DNA,对引物特异性、微波法提取DNA的扩增效果及检测灵敏度进行探讨。结果表明:微波功率1000W、处理时间30s、经5000r/min离心2min即可获得酸土脂环酸芽孢杆菌基因组DNA,所得模板质量符合聚合酶链式反应检测要求,目的条带清晰,检测时间仅为2h,检测限为200CFU/mL,有望真正应用于苹果汁生产的在线检测。  相似文献   

4.
Time and temperature pasteurization conditions common in the Wisconsin cider industry were validated using a six-strain cocktail of Escherichia coli O157:H7 and acid-adapted E. coli O157:H7 in pH- and degrees Brix-adjusted apple cider. Strains employed were linked to outbreaks (ATCC 43894 and 43895, C7927, and USDA-FSIS-380-94) or strains engineered to contain the gene for green fluorescent protein (pGFP ATCC 43894 and pGFP ATCC 43889) for differential enumeration. Survival of Salmonella spp. (CDC 0778. CDC F2833, and CDC H0662) and Listeria monocytogenes (H0222, F8027, and F8369) was also evaluated. Inoculated cider of pH 3.3 or 4.1 and 11 or 14 degrees Brix was heated under conditions ranging from 60 degrees C for 14 s to 71.1 degrees C for 14 s. A 5-log reduction of nonadapted and acid-adapted E. coli O157:H7 was obtained at 68.1 degrees C for 14 s. Lower temperatures, or less time at 68.1 degrees C, did not ensure a 5-log reduction in E. coli O157:H7. A 5-log reduction was obtained at 65.6 degrees C for 14 s for Salmonella spp. L. monocytogenes survived 68.1 degrees C for 14 s, but survivors died in cider within 24 h at 4 degrees C. Laboratory results were validated with a surrogate E coli using a bench-top plate heat-exchange pasteurizer. Results were further validated using fresh unpasteurized commercial ciders. Consumer acceptance of cider pasteurized at 68.1 degrees C for 14 s (Wisconsin recommendations) and at 71.1 degrees C for 6 s (New York recommendations) was not significantly different. Hence, we conclude that 68.1 degrees C for 14 s is a validated treatment for ensuring adequate destruction of E. coli O157:H7, Salmonella spp., and L. monocytogenes in apple cider.  相似文献   

5.
Ilex paraguariensis is popularly used in the preparation of a tea infusion (yerba mate), most commonly produced and consumed in the South American countries of Uruguay, Paraguay, Argentina, and Brazil. In this study, aqueous extracts of commercial tea, derived from the holly plant species I. paraguariensis were evaluated for their ability to inhibit or inactivate Escherichia coli O157:H7 in a microbiological medium and modified apple juice. Dialyzed, lyophilized aqueous extracts were screened for antimicrobial activity against E. coli O157:H7 strains ATCC 43894 and 'Cider' in tryptic soy broth (TSB) and apple juice (adjusted to pH 6.0 to allow for growth of the bacterium). A mixture of the two strains was used as the inoculum when apple juice was used as the medium. MBCs were determined to be ca. 5 and 10 mg/ml for ATCC 43894 and 'Cider', respectively, in TSB. Higher concentrations of the extract were required to inactivate E. coli O157:H7 in pH-adjusted apple juice. An approximate 4.5-log reduction was observed for E. coli O157:H7 treated with 40 mg/ml extract. It was concluded that aqueous extracts from commercial yerba mate have potential to be used as antimicrobials in foods and beverages against pathogenic E. coli O157:H7.  相似文献   

6.
The destructive effect of high pressure (615 MPa) combined with low temperature (15 degrees C) on various strains of Escherichia coli O157:H7 and various serovars of Salmonella in grapefruit, orange, apple, and carrot juices was investigated. The three-strain cocktail of E. coli O157:H7 (SEA13B88, ATCC 43895, and 932) was found to be most sensitive in grapefruit juice (8.34-log reduction) and least in apple juice (0.41-log reductions) when pressurized at 615 MPa for 2 min at 15 degrees C. Correspondingly, no injured survivor was detected in grapefruit and carrot juices under similar treatment conditions. No Salmonella spp. were detected in a 2-min pressure treatment (615 MPa, 15 degrees C) of grapefruit and orange fruit juices. Except for Enteritidis, all four serovars tested in the present study have viability loss of between 3.92- and 5.07-log reductions when pressurized in apple juice at 615 MPa for 2 min at 15 degrees C. No injured cells were recovered from grapefruit and orange juices, whereas the same treatment demonstrated reduction in numbers of Salmonella serovars Agona and Muenchen in apple juices and to a lesser extent with Typhimurium, Agona, and Muenchen in carrot juice. The present study demonstrated that low-temperature, high-pressure treatment has the potential to inactivate E. coli O157:H7 strains and different Salmonella spp. in different fruit juices.  相似文献   

7.
ABSTRACT: Alicyclobacillus acidoterrestris can produce sufficient guaiacol (methoxyphenol), a metabolic by-product of the bacterium, in apple juice to cause a detectable taint characterized by an antiseptic off-odor or distinct medicinal flavor and lingering aftertaste. Bacterial spoilage may not be visibly detectable. The objective of this study was to determine the best estimate threshold (BET) for detection of guaiacol in water and commercial pasteurized apple juice from concentrate using the forced-choice ascending concentration method of limits with an experienced 17-member sensory panel. The mean BET for aroma detection of guaiacol in water and apple juice was 0.48 ppb and 0.91 ppb, respectively. The mean BET for taste detection of guaiacol in water and apple juice was 0.17 ppb and 0.24 ppb, respectively. Individual aroma BET values ranged from 0.06 ppb to 4.71 ppb guaiacol in water and 0.17 ppb to 4.71 ppb for guaiacol in apple juice. Individual taste BET values ranged from 0.01 ppb to 4.71 ppb for guaiacol in water and apple juice. The taste BET was equal to or lower than the aroma BET for guaiacol in both water and apple juice for all panelists. There was about a 500-fold range in guaiacol taste detection between panelists, with some individuals exhibiting a BET value as low as 10 ppt (trillion). The information should be useful for developing quality assurance sensory methodology to evaluate potential apple juice flavor spoilage by Alicyclobacillus spp.  相似文献   

8.
This study describes a method using a DNA microarray chip to rapidly and simultaneously detect Alicyclobacillus species in orange juice based on the hybridization of genomic DNA with random probes. Three food spoilage bacteria were used in this study: Alicyclobacillus acidocaldarius, Alicyclobacillus acidoterrestris, and Alicyclobacillus cycloheptanicus. The three Alicyclobacillus species were adjusted to 2 × 10(3) CFU/ml and inoculated into pasteurized 100% pure orange juice. Cy5-dCTP labeling was used for reference signals, and Cy3-dCTP was labeled for target genomic DNA. The molar ratio of 1:1 of Cy3-dCTP and Cy5-dCTP was used. DNA microarray chips were fabricated using randomly fragmented DNA of Alicyclobacillus spp. and were hybridized with genomic DNA extracted from Bacillus spp. Genomic DNA extracted from Alicyclobacillus spp. showed a significantly higher hybridization rate compared with DNA of Bacillus spp., thereby distinguishing Alicyclobacillus spp. from Bacillus spp. The results showed that the microarray DNA chip containing randomly fragmented genomic DNA was specific and clearly identified specific food spoilage bacteria. This microarray system is a good tool for rapid and specific detection of thermophilic spoilage bacteria, mainly Alicyclobacillus spp., and is useful and applicable to the fruit juice industry.  相似文献   

9.
Wang J  Yue T  Yuan Y  Lu X  Shin JH  Rasco B 《Journal of food science》2011,76(2):M137-M142
Alicyclobacillus spp. are thermoacidophilic, spore-forming bacteria, some of which cause spoilage in pasteurized and heat-treated apple juice products through the production of guaiacol. It would be helpful if a rapid method to detect and discriminate Alicyclobacillus strains was available. A simple and rapid sample preparation method using nitrocellulose membrane filter (NMF) and a single reflection horizontal attenuated total reflection (HATR) accessory with Fourier transform infrared (FT-IR) was developed here. Fourier transform infrared (FT-IR) spectroscopy was used and tested on 8 Alicyclobacillus strains (KF, WAC, NWN-13501, NWN-12697, NWN-12654, NWN-10682, 1016, 1101). A linear discriminant analysis (LDA) was established to discriminate Alicyclobacillus strains. The sample preparation method could successfully separated strains into different groups by principal component analysis (PCA). High identification accuracy (95%) was achieved with the LDA model. PRACTICAL APPLICATION: The method developed in the paper can be used to discriminate different Alicyclobacillus strains from each other making it possible to easily determine whether the strain of Alicyclobacillus present is associated with juice spoilage.  相似文献   

10.
The antibacterial effect of low concentrations of monocaprylin on Escherichia coli O157:H7 in apple juice was investigated. Apple juice alone (control) or containing 2.5 mM (0.055%) or 5 mM monocaprylin was inoculated with a five-strain mixture of E. coli O157:H7 at approximately 6.0 log CFU/ml. The juice samples were stored at 23 or 4 degrees C for 14 or 21 days, respectively, and the population of E. coli O157:H7 was determined on tryptic soy agar plates supplemented with 0.6% yeast extract. At both storage temperatures, the population of E. coli O157:H7 in monocaprylin-supplemented juice samples was significantly lower (P < 0.05) than that in the control samples. The concentration of monocaprylin and the storage temperature had a significant effect on the inactivation of E. coli O157:H7 in apple juice. Monocaprylin at 5 mM was significantly more effective than 2.5 mM monocaprylin for killing E. coli O157:H7 in apple juice. Inactivation of E. coli O157:H7 by monocaprylin was more pronounced in juice stored at 23 degrees C than in the refrigerated samples. Results of this study indicated that monocaprylin is effective for killing E. coli O157:H7 in apple juice, but detailed sensory studies are needed to determine the organoleptic properties of apple juice containing monocaprylin.  相似文献   

11.
Inactivation of Escherichia coli O157:H7 and Salmonella in apple cider and orange juice treated with ozone was evaluated. A five-strain mixture of E. coli O157:H7 or a five-serovar mixture of Salmonella was inoculated (7 log CFU/ml) into apple cider and orange juice. Ozone (0.9 g/h) was pumped into juices maintained at 4 degrees C, ambient temperature (approximately 20 degrees C), and 50 degrees C for up to 240 min, depending on organism, juice, and treatment temperature. Samples were withdrawn, diluted in 0.1% peptone water, and surface plated onto recovery media. Recovery of E. coli O157:H7 was compared on tryptic soy agar (TSA), sorbitol MacConkey agar, hemorrhagic coli agar, and modified eosin methylene blue agar; recovery of Salmonella was compared on TSA, bismuth sulfite agar, and xylose lysine tergitol 4 (XLT4) agar. After treatment at 50 degrees C, E. coli O157:H7 populations were undetectable (limit of 1.0 log CFU/ml; a minimum 6.0-log CFU/ml reduction) after 45 min in apple cider and 75 min in orange juice. At 50 degrees C, Salmonella was reduced by 4.8 log CFU/ml (apple cider) and was undetectable in orange juice after 15 min. E. coli O157:H7 at 4 degrees C was reduced by 4.8 log CFU/ml in apple cider and by 5.4 log CFU/ml in orange juice. Salmonella was reduced by 4.5 log CFU/ml (apple cider) and 4.2 log CFU/ml (orange juice) at 4 degrees C. Treatment at ambient temperature resulted in population reductions of less than 5.0 log CFU/ml. Recovery of E. coli O157:H7 and Salmonella on selective media was substantially lower than recovery on TSA, indicating development of sublethal injury. Ozone treatment of apple cider and orange juice at 4 degrees C or in combination with mild heating (50 degrees C) may provide an alternative to thermal pasteurization for reduction of E. coli O157:H7 and Salmonella in apple cider and orange juice.  相似文献   

12.
In this study, two strains of Escherichia coli O157:H7, (ATCC 43889 and ATCC 43895) were acid adapted at pH 5.0 in tryptic soy broth (TSB) for 4 h. Commercial products of mango juice (pH 3.2), asparagus juice (pH 3.6), Yakult--a diluted milk fermented drink (pH 3.6), and low-fat yoghurt (pH 3.9) were inoculated with acid-adapted or nonadapted cells of E. coli O157:H7. Survival of the inoculated E. coli O157:H7 in these commercial food products during storage at 25 or 7 degrees C was examined. It was found that although survival of the acid-adapted and nonadapted E. coli O157:H7 ATCC 43895 in asparagus juice during storage at 7 degrees C did not show marked difference, in general, acid adaptation and low temperature enhanced the survival of E. coli O157:H7 in both the commercial fruit juices tested. On the contrary, acid adaptation reduced the survival of both the strains of the test organism in Yakult and low-fat yoghurt stored at 7 degrees C. Besides, E. coli O157:H7 ATCC 43895 survived longer than ATCC 43889 in all the products examined, regardless of the storage temperature and acid adaptation.  相似文献   

13.
Sandwich enzyme-linked immunosorbent assay, especially when coupled with biosensor technology, is a simple methodology that can rapidly screen juices for Escherichia coli O157:H7 contamination. However, sampling directly from apple juice and ciders has been postulated to reduce immunoassay sensitivity. In fluorescence sandwich enzyme-linked immunosorbent assays using commercially available polyclonal or monoclonal antibodies, sampling pasteurized apple juice spiked with E. coli O157:H7 compared to spiked phosphate-buffered saline shifted the range of detection. The spiked apple juice range of detection was 10(4) to 10(6) CFU/ml, whereas that for spiked phosphate-buffered saline was 10(6) to 10(8) CFU/ml, representing a hundredfold difference in sensitivity. Apple juice also increased background fluorescence intensity (P < 0.001) while reducing the net fluorescence intensity per CFU (P < 0.001). The addition of the polymer polyvinylpyrrolidone to apple juice significantly improved assay performance by increasing sensitivity and net fluorescence intensity per CFU and by reducing background fluorescence. Adjusting pH of apple juice from 3.9 to 7.4 improved assay performance but not to the degree seen with phosphate-buffered saline or polyvinylpyrrolidone-treated apple juice samples. The apple juice polyphenol, epicatechin, reduced net fluorescence intensity in a concentration-dependent manner, a change that was reversed by polyvinylpyrrolidone. Taken all together, these results suggest that polyvinylpyrrolidone can improve detection of O157:H7 in juices by reducing the effect of polyphenols on fluorescence sandwich enzyme-linked immunosorbent assay performance.  相似文献   

14.
The effect of high voltage pulsed electric field (PEF) treatment on Escherichia coli O157:H7 and generic E. coli 8739 in apple juice was investigated. Fresh apple juice samples inoculated with E. coli O157:H7 and E. coli 8739 were treated by PEF with selected parameters including electric field strength, treatment time, and treatment temperature. Samples were exposed to bipolar pulses with electric field strengths of 30, 26, 22, and 18 kV/cm and total treatment times of 172, 144, 115, and 86 micros. A 5-log reduction in both cultures was determined by a standard nonselective medium spread plate laboratory procedure. Treatment temperature was kept below 35 degrees C. Results showed no difference in the sensitivities of E. coli O157:H7 and E. coli 8739 against PEF treatment. PEF is a promising technology for the inactivation of E. coli O157:H7 and E. coli 8739 in apple juice.  相似文献   

15.
Fresh meat products can become contaminated with the pathogen Escherichia coli O157:H7 during the slaughter process; therefore, an E. coli O157:H7 indicator to verify the effectiveness of process controls in slaughter establishments would be extremely useful. The hides of 20 beef cattle were sampled, and 113 bacterial isolates were obtained. Thirteen of these isolates representing four genera, Escherichia, Enterobacter, Providencia, and Serratia, were selected based on growth and biochemical characteristics similar to those of five clinical strains of E. coli O157:H7. The temperature sensitivity was determined for the individual isolates and the five E. coli O157:H7 strains at 55 and 65 degrees C. D65-values for all 13 isolates were not significantly different from D65-values of the E. coli O157:H7 strains. E. coli isolates were the only isolates whose D55-values were not significantly different from those of the E. coli O157:H7 strains. E. coli isolates P3 and P68 were more resistant to the effects of 55 degrees C than were the other E. coli isolates but were not significantly different from E. coli O157:H7 WS 3331 (P > 0.05). The remaining E. coli isolates (P1, P8, and P14) were not significantly different from E. coli O157:H7 strains ATCC 35150, ATCC 43894, ATCC 43895, and WS 3062 (P > 0.05). Prerigor lean and adipose beef carcass tissue was artificially contaminated with stationary-phase cultures of the five E. coli beef cattle isolates or a cocktail of five E. coli O157:H7 strains in a fecal inoculum. Each tissue sample was processed with the following microbial interventions: 90 degrees C water; 90 degrees C water followed by 55 degrees C 2% lactic acid; 90 degrees C water followed by 20 degrees C 2% lactic acid; 20 degrees C water followed by 20 degrees C 2% lactic acid; 20 degrees C water followed by 20 degrees C 20 ppm chlorine; and 20 degrees C water followed by 20 degrees C 10% trisodium phosphate. The appropriateness of the E. coli isolates as potential E. coli O157:H7 indicators was dependent upon the microbial intervention utilized. For all microbial intervention methods applied irrespective of tissue type, the mean log reductions of at least two E. coli isolates were not significantly different from the mean log reduction of the E. coli O157:H7 cocktail (P > 0.05). Because of the frequent employment of multiple microbial interventions in the cattle industry, no single isolate can realistically represent the effectiveness of all microbial interventions for reduction of E. coil O157:H7. Thus, the use of a combination of E. coli isolates may be required to accurately predict the effectiveness of microbial intervention methods on the reduction of E. coli O157:H7 in beef carcass tissue.  相似文献   

16.
Survival of Escherichia coli O157:H7 was studied on strawberry, a fruit that is not usually washed during production, harvest, or postharvest handling. Two strains of the bacteria were tested separately on the fruit surface or injected into the fruit. Both strains of E. coli O157:H7 survived externally and internally at 23 degrees C for 24 h and at 10, 5, and -20 degrees C for 3 days. The largest reduction in bacterial population occurred at -20 degrees C and on the fruit surface during refrigeration. In all experiments, the bacteria inside the fruit either survived as well as or better than bacteria on the surface, and ATCC 43895 frequently exhibited greater survival than did ATCC 35150. Two strains of E. coli also survived at 23 degrees C on the surface and particularly inside strawberry fruit. Chemical agents in aqueous solution comprising NaOCl (100 and 200 ppm), Tween 80 (100 and 200 ppm), acetic acid (2 and 5%), Na3PO4 (2 and 5%), and H2O2 (1 and 3%) were studied for their effects on reduction of surface-inoculated (10(8) CFU/ml) E. coli O157:H7 populations on strawberry fruit. Dipping the inoculated fruit in water alone reduced the pathogen population about 0.8 log unit. None of the compounds with the exception of H2O2 exhibited more than a 2-log CFU/g reduction of the bacteria on the fruit surface. Three percent H202, the most effective chemical treatment, reduced the bacterial population on strawberries by about 2.2 log CFU/g.  相似文献   

17.
The effects of vanillin on the fates of Listeria monocytogenes and Escherichia coli O157:H7 at pH values between 3.5 and 4.5 were verified in a model apple juice (MAJ) medium and in apple juice incubated at 4 or 15 degrees C. Viable E. coli O157:H7 cells were recovered from MAJ for up to 10 days, but L. monocytogenes did not survive at pH 3.5. Supplementation with 40 mm vanillin exerted a lethal effect that was species, concentration, pH and temperature dependant. E. coli O157:H7 was more sensitive to vanillin than L. monocytogenes, and viable cells could not be recovered after 2 days incubation at either temperature. L. monocytogenes and E. coli O157:H7 were inoculated (10(5) cfu/ml) in pH adjusted (pH 4.00) or unadjusted (pH 3.42) juice from Granny Smith apples that was supplemented with 40 mm vanillin. Neither species were recovered after 3 days incubation at 4 or 15 degrees C. These findings indicate that vanillin could be useful as a preservative for minimally processed apple products.  相似文献   

18.
ABSTRACT:  Food irradiation is a safe and effective method for inactivation of pathogenic bacteria, including Escherichia coli O157:H7, in meat, leafy greens, and complex ready-to-eat foods without affecting food product quality. Determining the radiation dose needed to inactivate E. coli O157:H7 in foods and the validation of new irradiation technologies are often performed through inoculation of model systems or food products with cocktails of the target bacterium, or use of single well-characterized isolates. In this study, the radiation resistance of 4 E. coli strains, 2 DNA repair deficient strains used for cloning and recombinant DNA technology (JM109 and DH5α) and 2 strains of serotype O157:H7 (C9490 and ATCC 35150), were determined. The D -10 values for C9490, ATCC 35150, JM109, and DH5α stationary phase cells suspended in Butterfield's Phosphate Buffer and irradiated at 4 °C were 229 (± 9.00), 257 (± 7.00), 61.2 (± 10.4), and 51.2 (± 8.82) Gy, respectively. The results of this study indicate that the extreme radiation sensitivity of JM109 and DH5α makes them unsuitable for use as surrogate microorganisms for pathogenic E. coli in the field of food irradiation research. Use of E. coli JM109 and DH5α, which carry mutations of the recA and gyrA genes required for efficient DNA repair and replication, is not appropriate for determination of radiation inactivation kinetics and validation of radiation processing equipment.  相似文献   

19.
Alicyclobacillus acidoterrestris, a thermoacidophilic and spore-forming bacterium, has been isolated from spoiled acidic juices and is considered to be one of the important target microorganisms in quality control of acidic canned foods. Combined high pressure and heat treatment showed an effectiveness to control A. acidoterrestris spores. However, the effectiveness of the combined treatment may change upon the apple juice concentration. Therefore, the objective of this study was to evaluate different levels of apple juice concentrate for reduction of Alicyclobacillus spores by high pressure and heat. Spores of A. acidoterrestris were inoculated into three different concentrations of apple juice (17.5, 35, and 70 degrees Brix), and subjected to three high-pressure treatments (207, 414, and 621 MPa) at four different temperatures (22, 45, 71, and 90 degrees C). High-pressure treatment (207, 414, and 621 MPa) at 22degrees C did not reduce the level of spores regardless of the apple juice concentration (P > 0.05). In diluted apple juice (17.5 degrees Brix), the combined treatment of high pressure and heat resulted in spore reductions of about 2 log at 45 degrees C, and more than 5 log at higher temperatures (71 and 90 degrees C) in a high-pressure and temperature-dependent manner. For apple juice with a higher concentration (30 degrees Brix), high-pressure treatment showed no effect at 45 degrees C but resulted in about 2 and 4 log reduction at 71 and 90 degrees C, respectively. However, for apple juice concentrate (70 degrees Brix), treatment with heat or high pressure alone, or their combinations showed no inactivation against spores of A. acidoterrestris. It is likely that differences in the water availability explain the greater resistance of spores to high-pressure inactivation in the juice concentrates than in diluted juices. Our results demonstrate that the effect of high pressure combined with heat against spores of A. acidoterrestris was highly dependent on the apple juice concentration.  相似文献   

20.
We investigated the ability of enterohemorrhagic Escherichia coli O157:H7 to spread in wounded apple tissue by transmission electron microscopy. Red Delicious apples were wounded with an artist knife (7 mm depth) and either inoculated with 10 microl per wound of decimally diluted E. coli O157:H7 or submerged into E. coli O157:H7 suspended in sterile distilled water and then stored at 37 degrees C for 24 h. Transmission electron microscopy showed E. coli O157:H7 formed bacterial aggregates near the apple cell walls, and single cells were in close proximity to the apple cell wall surfaces and to plasma membranes. E. coli O157:H7 presence caused degradation of plasma membranes and release of the cytoplasm contents of the apple cortical cells into the central vacuole. Apple tissue turgor pressure tests showed that the apple cells infected with E. coli O157:H7 isolates were more likely to rupture than the control noninoculated apple cells. E. coli O157:H7 cells grown in apple tissue showed the formation of granules and vesicles within the bacterial cytoplasma and separation of the plasma membranes. Our study shows that E. coli O157:H7 can grow and survive in the apple tissue environment by causing degradation of the apple cellular components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号