首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
This paper presents a motion coordination of two robot manipulators coordinating an object. To coordinate the object, a force/position control scheme in a mode of leader/follower is devised. The dynamics of the object is incorporated into the dynamics of the leader arm, which yields a reduced order model of two arm system. In order to regulate interaction forces between two arms, the dynamics of the follower arm is expressed as force dynamic equations such that a novel direct force control scheme is devised. For the devised control scheme, a numerical simulation is shown. Under the coupling forces between two arms and two different type of bounded input disturbances, boundedness and asymptotic stability results based on a proposed Lyapunov function are shown. Also, a sufficient condition for a stability robustness is derived based on the Lyapunov approach.  相似文献   

2.
A direct adaptive robust tracking control is proposed for trajectory tracking of 6 DOF industrial robot in the presence of parametric uncertainties, external disturbances and uncertain nonlinearities. The controller is designed based on the dynamic characteristics in the working space of the end-effector of the 6 DOF robot. The controller includes robust control term and model compensation term that is developed directly based on the input reference or desired motion trajectory. A projection-type parametric adaptation law is also designed to compensate for parametric estimation errors for the adaptive robust control. The feasibility and effectiveness of the proposed direct adaptive robust control law and the associated projection-type parametric adaptation law have been comparatively evaluated based on two 6 DOF industrial robots. The test results demonstrate that the proposed control can be employed to better maintain the desired trajectory tracking even in the presence of large parametric uncertainties and external disturbances as compared with PD controller and nonlinear controller. The parametric estimates also eventually converge to the real values along with the convergence of tracking errors, which further validate the effectiveness of the proposed parametric adaption law.  相似文献   

3.
In this paper, the position and force tracking control problem of cooperative robot manipulator system handling a common rigid object with unknown dynamical models and unknown external disturbances is investigated. The universal approximation properties of fuzzy logic systems are employed to estimate the unknown system dynamics. On the other hand, by defining new state variables based on the integral and differential of position and orientation errors of the grasped object, the error system of coordinated robot manipulators is constructed. Subsequently by defining the appropriate change of coordinates and using the backstepping design strategy, an adaptive fuzzy backstepping position tracking control scheme is proposed for multi-robot manipulator systems. By utilizing the properties of internal forces, extra terms are also added to the control signals to consider the force tracking problem. Moreover, it is shown that the proposed adaptive fuzzy backstepping position/force control approach ensures all the signals of the closed loop system uniformly ultimately bounded and tracking errors of both positions and forces can converge to small desired values by proper selection of the design parameters. Finally, the theoretic achievements are tested on the two three-link planar robot manipulators cooperatively handling a common object to illustrate the effectiveness of the proposed approach.  相似文献   

4.
This paper addresses the implementation of a new sliding mode control algorithm for high speed and high precision tasks, which is robust against variations in the robot parameters and load. The effects of nonlinear dynamics, which are difficult to model accurately, become prominent in high speed operations. This paper attempts to treat the nonlinear dynamics of a SCARA robot as a disturbance. Based upon this approach, a new sliding mode control algorithm is proposed, in which a switching control input can be obtained easily and is determined to satisfy the existence condition for sliding mode control. A graphic simulator is used to evaluate the proposed algorithm for a SCARA robot. Simulation results show that the proposed algorithm is robust against disturbances and can reduce the magnitude of chattering, which is an unavoidable problem in sliding mode control. Experiments are carried out to validate the simulated results with an industrial SCARA robot using DSPs.  相似文献   

5.
In this paper, a new revolute mobile robot arm with five degree of freedom (d.o.f) was developed for autonomous moving robots. As a control system for the robot arm, a distributed control system composed of the main controller and five motor controllers for arm joints was developed. The main controller and the motor controllers were developed using the ARM microprocessor and the TMS320c2407 microprocessor, respectively. A new trajectory tracking algorithm for the motor controllers was devised employing pre-generated off-line trajectory data. Also, a 3-D simulator based on the OpenGL software to simulate the motion of the robot arm was developed. To validate the performance of the robot system, experiments to track a specified trajectory were performed.  相似文献   

6.
This article presents a robust finite-time maneuver control scheme for the longitudinal attitude dynamic of the aircraft with unsteady aerodynamic disturbances and input saturation. To efficiently eliminate the influence of unsteady aerodynamic disturbances, nonlinear finite-time observers are developed. Despite the existence of the nonlinearity and the coupling between aircraft states and unsteady aerodynamic disturbances, the proposed observers can still precisely estimate the unmeasurable unsteady aerodynamic disturbances in finite time. To attenuate the effect caused by input saturation, a finite-time auxiliary system is constructed. With the error between the desired control input and saturation input as the input of the auxiliary system, the additional signals are generated to compensate for the effect of input saturation. Combined with the finite-time observers and the finite-time auxiliary system, a robust finite-time backstepping attitude control design is developed. The finite-time convergence of all closed-loop system signals is rigorously proved via Lyapunov analysis method under the developed robust attitude control schemes. Finally, simulation results are presented to illustrate the effectiveness of the proposed attitude control approaches.  相似文献   

7.
仿人按摩机器人手臂是按摩机器人的重要组成部分,其控制系统是中医按摩机器人完成按摩位置精确定位的关键因素。为了实现对仿人按摩机器人手臂精确控制,基于PC+PMAC运动控制卡设计了仿人按摩机器人手臂控制系统。通过PC与PMAC运动控制卡之间的通信对PMAC运动控制卡进行参数设置以及PMAC运动控制卡的PID控制器参数的优化。基于VC++软件开发平台设计了控制系统软件。仿真及实际应用效果表明,设计开发的仿人按摩机器人手臂控制系统实现了对手臂的控制,达到了设计要求。  相似文献   

8.
This paper details a study performed on a new proposed twelve degree-of-freedom dual robot arm, which is very light but capable of handling heavy loads. The proposed robot arm has a higher value for the ratio of the load capacity/robot weight than conventional robot arms, which are actuated by motors with speed reducers, such as a harmonic drives, since it adopts a new type of robot actuator based on a closed chain mechanism. Because of the high value of the ratio of the payload capacity/robot weight, it can be used as a robot arm for mobile robots and for walking robots. Analyses of the design scheme and of the mechanism of the joint actuator used for the robot arm are presented. Also, the control system developed for the robot arm is introduced. The superior characteristics of the new proposed robot arm, handling heavy payloads with light weight links compared to industrial robots, are presented through carrying out various payload capacity tests. Since the robot arm is designed with light links, it has some deflections and these deflections of the links are analyzed using the Finite Element Method (FEM). The results of performance tests are presented to check the correctness of the FEM analysis and to demonstrate the actual capability of handling heavy payloads applied to the robot arm.  相似文献   

9.
Usually, a humanoid robot has two arms and stereo vision system to execute human daily actions. It has complicate mechanism and mechatronics control system structure. The hardware control structure should be planned ingeniously to execute the complicate computation of 3D image processing and manipulate a multi degree of freedom dual arms motion control, especially for mobile robot system. Here a 7 DOF dual arms robot with FPGA hardware control structure and a digital signal processor (DSP) based CMOS stereo vision system are designed and built in our lab. The intelligent fuzzy sliding mode control strategy is employed to establish the visual guided robotic motion control software. This low cost humanoid robotic system has compact control structure and mechanism integration for mobile application purpose. Object detecting and tracking schemes in 3D space were developed for locating the target position and then guided the robot arm to pick and place objects or track the specified moving target. Experimental results show that this delicate robotic system has basic humanoid function.  相似文献   

10.
漂浮基空间机器人协调运动的自适应控制与鲁棒控制   总被引:12,自引:3,他引:12  
讨论了载体姿态受控、位置不受控制的漂浮基空间机器人协调运动的控制问题。借助于虚拟扩展系统的控制输入与输出 ,克服了漂浮基空间机器人系统控制方程关于惯性参数呈非线性函数关系的难点 ,保持了控制方程关于惯性参数的线性函数关系。以此为基础 ,针对末端抓手所持载荷参数是未知及不确定的两种情况 ,分别设计了载体姿态及末端抓手惯性空间轨迹协调运动的自适应控制方案与鲁棒控制方案。仿真运算证实了上述控制方案的有效性  相似文献   

11.
双臂弹性单腿机器人的垂直跳跃控制   总被引:2,自引:0,他引:2  
提出一种新型弹性单腿跳跃机器人系统,该机器人由两个驱动臂和一个弹性被动伸缩腿组成,系统只能依靠内部动力学耦合实现动态站立平衡、起跳、稳定连续跳跃运动.给出系统机构模型,分析该系统的变约束特征.该机器人系统在支撑相是二阶非完整约束系统,在飞行相是一阶非完整约束系统.针对这种欠驱动非完整约束动力学系统,采用时变非线性输入变换,提出一种实现垂直方向连续跳跃的运动控制算法.以控制腿部的姿态和振动规律、系统动量为目标实现机器人的全状态稳定控制.通过计算仿真模拟,验证提出的运动控制方案是可行的.该研究以探索弹性欠驱动机械系统振动能量循环利用技术为目标,研究结果对设计新型弹性欠驱动机械系统以及探索它在航天领域的应用具有一定参考价值.  相似文献   

12.
针对具有外部扰动与参数不确定或未知的情况,讨论漂浮基柔性空间机械臂系统的协调控制与柔性振动抑制问题。基于假设模态法对柔性臂杆进行近似描述,并利用第二类拉格朗日方程与系统动量守恒关系,推导带外部扰动的漂浮基柔性空间机械臂系统的动力学方程。以此为基础,提出漂浮基柔性空间机械臂系统协调运动的非线性鲁棒控制与非线性鲁棒自适应控制方案。此两种控制方案均可克服外部扰动对系统的影响,控制漂浮基柔性空间机械臂系统载体姿态与机械臂各关节铰完成期望的协调运动,同时有效地抑制了臂杆的柔性振动。除此之外,非线性鲁棒自适应控制方案还可以解决系统惯性参数不确定或未知的问题。系统数值仿真结果证实了所提控制方案的有效性和可行性。  相似文献   

13.
陈力 《机械科学与技术》2004,23(6):705-708,751
讨论了载体的位置与姿态均不受控制的带滑移铰空间机器人的控制问题。结合系统动量守恒关系进行的系统运动学、动力学分析表明 ,可以得到一组欠驱动形式的空间机器人系统的动力学方程 ,它们可以表示为一组适当选择的组合惯性参数的线性函数 ,由此克服了惯常的空间机器人系统动力学方程关于惯性参数呈非线性函数关系的难点。在此基础上 ,针对系统中机械手相关参数不能精确确定但误差范围可以确定的情况 ,设计了空间机器人末端抓手相对轨迹运动的变结构鲁棒控制方案。此控制方案不需要测量、反馈载体的位置、移动速度及移动加速度 ,并由于在控制系统中对不确定参数采用保持鲁棒性而非在线估计方式 ,计算量也较小。仿真运算证实了提出控制方案的有效性。  相似文献   

14.
A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.  相似文献   

15.
讨论了载体位置不受控制情况下,具有参数不确定性的漂浮基双臂空间机器人姿态、关节协调运动的控制问题。结合系统动量守恒关系进行的系统运动学、动力学分析表明,可以得到一组与适当选择的组合惯性参数呈线性函数关系的系统动力学方程。以此为基础,针对双臂空间机器人末端爪手所持载荷参数不确定,但误差范围可确定的情况,设计了漂浮基双臂空间机器人姿态、关节协调运动的变结构鲁棒控制方案。该控制方案的优点在于:不需要反馈、测量漂浮基的位置、移动速度及移动加速度,且与自适应控制方案相比,化积分运算为简单四则运算,计算量大为减少,有利于克服机载计算机计算能力有限的问题。一个平面双臂空间机器人的系统数值仿真,证实了方法的有效性。  相似文献   

16.
In order to solve the problem of trajectory tracking for a class of novel serial-parallel hybrid humanoid arm(HHA), which has parameters uncertainty, frictions, disturbance, abrasion and pulse forces derived from motors, a multistep dynamics modeling strategy is proposed and a robust controller based on neural network(NN)-adaptive algorithm is designed. At the first step of dynamics modeling, the dynamics model of the reduced HHA is established by Lagrange method. At the second step of dynamics modeling, the parameter uncertain part resulting mainly from the idealization of the HHA is learned by adaptive algorithm. In the trajectory tracking controller, the radial basis function(RBF) NN, whose optimal weights are learned online by adaptive algorithm, is used to learn the upper limit function of the total uncertainties including frictions, disturbances, abrasion and pulse forces. To a great extent, the conservatism of this robust trajectory tracking controller is reduced, and by this controller the HHA can impersonate mostly human actions. The proof and simulation results testify the validity of the adaptive strategy for parameter learning and the neural network-adaptive strategy for the trajectory tracking control.  相似文献   

17.
This paper addresses the high performance motion control of hydraulic actuators with parametric uncertainties, unmodeled disturbances and unknown valve dead-zone. By constructing a smooth dead-zone inverse, a robust adaptive controller is proposed via backstepping method, in which adaptive law is synthesized to deal with parametric uncertainties and a continuous nonlinear robust control law to suppress unmodeled disturbances. Since the unknown dead-zone parameters can be estimated by adaptive law and then the effect of dead-zone can be compensated effectively via inverse operation, improved tracking performance can be expected. In addition, the disturbance upper bounds can also be updated online by adaptive laws, which increases the controller operability in practice. The Lyapunov based stability analysis shows that excellent asymptotic output tracking with zero steady-state error can be achieved by the developed controller even in the presence of unmodeled disturbance and unknown valve dead-zone. Finally, the proposed control strategy is experimentally tested on a servovalve controlled hydraulic actuation system subjected to an artificial valve dead-zone. Comparative experimental results are obtained to illustrate the effectiveness of the proposed control scheme.  相似文献   

18.
针对复杂机器人对象,充分考虑系统的各种不确定因素,在不确定保守上界己知情况下,设计了全局稳定的鲁棒自适应复合控制器。控制器设计在确保高品质控制的同时,避免或减少了参数漂移、保守鲁棒增益及控制系统抖振等问题,从理论与实际的角度提高了控制器的鲁棒性和实用性。仿真实验验证了提出优化方法的有效性,而且机器人能在一定范围外力的干扰下回复稳定姿态步行。  相似文献   

19.
Robust adaptive vibration control of a flexible structure   总被引:1,自引:0,他引:1  
Different types of L1 adaptive control systems show that using robust theories with adaptive control approaches has produced high performance controllers. In this study, a model reference adaptive control scheme considering robust theories is used to propose a practical control system for vibration suppression of a flexible launch vehicle (FLV). In this method, control input of the system is shaped from the dynamic model of the vehicle and components of the control input are adaptively constructed by estimating the undesirable vibration frequencies. Robust stability of the adaptive vibration control system is guaranteed by using the L1 small gain theorem. Simulation results of the robust adaptive vibration control strategy confirm that the effects of vibration on the vehicle performance considerably decrease without the loss of the phase margin of the system.  相似文献   

20.
针对高速公路高峰期拥挤产生的垃圾等问题,设计一种轨道式垃圾回收机器人,由光伏发电装置、机器人壳体、末端手爪、关节臂以及控制系统等组成,主体结构采用双臂三关节结构,采用西门子PLC控制系统,通过控制关节臂的旋转以及偏转、末端手爪的旋转及开合等动作来实现工作的目的。结合外场作业的特殊性,采用光伏能源装置,对其结构及控制系统进行设计,通过对机器人进行三维建模、运动和控制仿真分析,验证系统的可行性及有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号