首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This paper presents a technique for postural loading on the upper body assessment (LUBA). The proposed method is based on the new experimental data for composite index of perceived discomfort (ratio values) for a set of joint motions, including the hand, arm, neck and back, and the corresponding maximum holding times in static postures. Twenty male subjects participated in the experiment designed to measure perceived joint discomforts. The free modulus technique of the magnitude estimation method was employed to obtain subjects' discomforts for varying joint motions. The developed postural classification scheme was based on the angular deviation levels from the neutral position for each joint motion. These were divided into groups with the same degree of discomforts based on the statistical analysis. Each group was assigned a numerical discomfort score relative to the perceived discomfort value of elbow flexion, which exhibited the lowest level among all joint motions investigated in this study, and, therefore, was set as a reference point. The criteria for evaluating stresses of working postures were proposed based on the four distinct action categories, in order to enable practitioners to apply appropriate corrective actions. The proposed scheme can be used for evaluating and redesigning static working postures in industry.  相似文献   

2.
Awkward shoulder postures have been suggested to be a cause of shoulder discomfort among bakery workers. This study aimed at long-duration assessment of upper arms posture and motion and their association with perceived symptoms among bakery workers. Among workers in three types of bread systems, fifty-seven bakers were randomly selected. The self-reported rates for the perceived severity and frequency of shoulder discomfort were collected through questionnaires. Working postures and movements of the shoulders during work were continuously recorded with inclinometry measurements for three hours. Percentage of time spent with the upper arm right elevated more than 60° was significantly correlated with the perceived discomfort rate in the right shoulder for all bakery workers (r = 0.48 to 0.63, p ≤ 0.05). A significant correlation was found between angular velocity with the perceived discomfort intensity for right upper arm.(r = 0.60 to 0.87, ≤0.005) of all workers in the three baking systems. Physical exposure in bakers was characterized by significantly more awkward postures and the percentage of time spent with the upper arms elevated more than 60°. The current findings can facilitate more informed decisions with respect to both engineering (e.g.ergonomic workstation and tool design) and administration (e.g. work organization) control strategies.  相似文献   

3.
Motion capturing is a promising method to assess working postures and human movements and, therewith, the risk of musculoskeletal injuries that could occur while performing manual tasks in industrial settings. To obtain a reliable risk assessment, the motion capture system used has to accurately measure body postures adopted by the worker during the task. This study evaluates the accuracy to measure joint angles of upper extremities of two different motion capture systems, namely the Microsoft Kinect V2 and the Captiv system, for angles of upper extremities. For this purpose, an experimental study was conducted involving 12 subjects performing preset static postures and basic movements, including elbow flexion, shoulder flexion, and shoulder abduction. In addition, to examine whether self‐occlusion or occlusion of body parts by work equipment has an impact on the accuracy of the Kinect V2, the subjects handled boxes during some of the tests. As a gold standard, a goniometer for static and an angle scale for dynamic exercises was used. The Captiv system shows high correlation coefficients (r > .93) and small mean absolute errors (<5°) for all movements except for elbow flexion. The Kinect V2 has sufficient results for joint angles captured without occlusion as well, but the accuracy significantly decreases when occlusion occurs.  相似文献   

4.
In this study, a biomimetic robot arm with joint redundancy movable in a three-dimensional space is taken into consideration. The basic trajectories for controlling all joints are formulated under the minimum angular jerk criterion. Then, a time adjustment of the joint motion of the elbow relative to the shoulder is provided for representing specific properties of joint angular trajectories during a movement. Here, a systematical scheme for formulating the human-like trajectory has been developed by use of a direct kinematics. As the angular trajectories of all joints can be formulated in the proposed manner, the hand trajectory can be uniquely produced once the initial and final postures of the arm and a movement duration are given. The trajectories under the proposed scheme are produced by utilizing the same movement conditions observed by experiments. Then, performance for reproducing human-like trajectories has been evaluated under the comparative analysis between the observed and the produced trajectories.  相似文献   

5.
Kee D  Karwowski W 《Ergonomics》2001,44(6):614-648
This study presents data for the joint angles of isocomfort (JAI) in sitting and standing males based on perceived comfort ratings for static joint postures maintained for 60 s. The JAI value was defined as a boundary indicating joint deviation (an angle) from neutral posture, within which the perceived comfort for different body joint postures is expected to be the same. An experiment for quantifying perceived comfort ratings was conducted using the free modulus method of magnitude estimation. Based on experimental results, regression equations were derived for each joint posture, to represent the relationships between different levels of joint deviation/joint posture and corresponding normalized comfort scores. The JAI values were developed for nine verbal categories of joint comfort. The JAIs with the marginal comfort levels, one of the nine verbal categories used, for most joint postures around the wrist, elbow, neck and ankle were similar to the maximum range of motion (ROM) values for these joints. However, the JAIs with the marginal comfort category for back and hip postures were much smaller than the maximum ROM values for these joints. There were no significant differences in JAI expressed in terms of the percentage of the corresponding maximum ROM values between sitting and standing postures. The relative 'marginal comfort index', defined as the percentage of JAIs for the marginal comfort relative to the corresponding maximum ROM values, for the hip was the smallest among all joints. This was followed, in an increasing order of the marginal comfort index, by the lower back and shoulder, while the marginal comfort index for the elbow joint was the largest. The results of this study suggest that static postures maintained for 60 s cause greater discomfort for the hip joint than for the other joints studied, and less discomfort for the elbow than for the other joints. The data about JAIs can be used as guidelines for enhancing postural comfort when designing a variety of human-machine tasks where static postures cannot be eliminated.  相似文献   

6.
While using their smartphone, users tend to adopt awkward neck and shoulder postures for an extended duration. Such postures impose the risk of MSDs on those body parts. Numerous studies have been undertaken to examine neck posture; however, few studies have investigated shoulder postures. This study examined various shoulder postures during smartphone use and their effect on neck and shoulder kinematics, muscle loading, and neck/shoulder discomfort. Thirty-two asymptomatic young adult smartphone users randomly performed texting tasks for 3 min at four different shoulder flexion angles (15°, 30°, 45°, and 60°), while maintained a neck posture in the neutral position (0° neck flexion angle). Measures were taken of neck and shoulder muscle activity of the cervical erector spinae (CES), anterior deltoid (AD), upper trapezius (UT) and lower trapezius (LT), and kinematic data (angle, distance and gravitational moment). Results showed AD and LT muscle activity significantly increased when the shoulder flexion angle increased with an opposite effect on CES and UT. A recommended shoulder posture was identified as 30° flexion, as this yielded the best compromise between activation levels of the four muscles studied. This angle also induced the lowest neck/shoulder discomfort score. The findings suggest smartphone users hold their device at approximately 30° shoulder flexion angle with their neck in a neutral posture to reduce the risk of shoulder and neck musculoskeletal disorders when smartphone texting.Relevance to industrySmartphone use in the manufacturing and service industries is an integral part of work and useful means of communication tool. Awkward postures during extensive smartphone use impose an increased risk of both neck and shoulder musculoskeletal disorders. Shoulder flexion angles need consideration when making recommendations about safe work postures during smartphone use.  相似文献   

7.
《Ergonomics》2012,55(6):614-648
This study presents data for the joint angles of isocomfort (JAI) in sitting and standing males based on perceived comfort ratings for static joint postures maintained for 60 s. The JAI value was defined as a boundary indicating joint deviation (an angle) from neutral posture, within which the perceived comfort for different body joint postures is expected to be the same. An experiment for quantifying perceived comfort ratings was conducted using the free modulus method of magnitude estimation. Based on experimental results, regression equations were derived for each joint posture, to represent the relationships between different levels of joint deviation/joint posture and corresponding normalized comfort scores. The JAI values were developed for nine verbal categories of joint comfort. The JAIs with the marginal comfort levels, one of the nine verbal categories used, for most joint postures around the wrist, elbow, neck and ankle were similar to the maximum range of motion (ROM) values for these joints. However, the JAIs with the marginal comfort category for back and hip postures were much smaller than the maximum ROM values for these joints. There were no significant differences in JAI expressed in terms of the percentage of the corresponding maximum ROM values between sitting and standing postures. The relative ‘marginal comfort index’, defined as the percentage of JAIs for the marginal comfort relative to the corresponding maximum ROM values, for the hip was the smallest among all joints. This was followed, in an increasing order of the marginal comfort index, by the lower back and shoulder, while the marginal comfort index for the elbow joint was the largest. The results of this study suggest that static postures maintained for 60 s cause greater discomfort for the hip joint than for the other joints studied, and less discomfort for the elbow than for the other joints. The data about JAIs can be used as guidelines for enhancing postural comfort when designing a variety of human-machine tasks where static postures cannot be eliminated.  相似文献   

8.
《Ergonomics》2012,55(5):492-505
Many Korean workers are exposed to repetitive manual tasks or prolonged poor working postures that are closely related to back pain or symptoms of musculoskeletal disorders. Workers engage in tasks that require not only handling of heavy materials, but also assuming prolonged or repetitive non-neutral work postures. Poor work postures that have been frequently observed in the workplaces of shipbuilding shops, manufacturing plants, automobile assembly lines and farms often require prolonged squatting, repetitive arm raising and wrist flexion and simultaneous trunk flexion and lateral bending. In most manufacturing industries, workers have to assume improper work postures repetitively, several hundreds of times per day depending on daily production rate. A series of psychophysical laboratory experiments were conducted to evaluate the postural load at various joints. A postural load assessment system was then developed based on a macro-postural classification scheme. The classification scheme was constructed based on perceived discomfort for various joint motions as well as previous research outcomes. On the basis of the perceived discomfort, postural stress levels for the postures at individual joints were also defined by a ratio scale to the standing neutral posture. Laboratory experiments simulating automobile assembly tasks were carried out to investigate the relationship between body-joint and whole-body discomfort. Results showed a linear relationship between the two types of discomfort, with the shoulder and low back postures being the dominant factor in determining the whole body postural stresses. The proposed method was implemented into a computer software program in order to automate the procedure of analysing postural load and to enhance usability and practical applicability.  相似文献   

9.
Chung MK  Lee I  Kee D 《Ergonomics》2005,48(5):492-505
Many Korean workers are exposed to repetitive manual tasks or prolonged poor working postures that are closely related to back pain or symptoms of musculoskeletal disorders. Workers engage in tasks that require not only handling of heavy materials, but also assuming prolonged or repetitive non-neutral work postures. Poor work postures that have been frequently observed in the workplaces of shipbuilding shops, manufacturing plants, automobile assembly lines and farms often require prolonged squatting, repetitive arm raising and wrist flexion and simultaneous trunk flexion and lateral bending. In most manufacturing industries, workers have to assume improper work postures repetitively, several hundreds of times per day depending on daily production rate. A series of psychophysical laboratory experiments were conducted to evaluate the postural load at various joints. A postural load assessment system was then developed based on a macro-postural classification scheme. The classification scheme was constructed based on perceived discomfort for various joint motions as well as previous research outcomes. On the basis of the perceived discomfort, postural stress levels for the postures at individual joints were also defined by a ratio scale to the standing neutral posture. Laboratory experiments simulating automobile assembly tasks were carried out to investigate the relationship between body-joint and whole-body discomfort. Results showed a linear relationship between the two types of discomfort, with the shoulder and low back postures being the dominant factor in determining the whole body postural stresses. The proposed method was implemented into a computer software program in order to automate the procedure of analysing postural load and to enhance usability and practical applicability.  相似文献   

10.
Tablets are much heavier than smartphones and able to bring more musculoskeletal disorders in the upper extremities. The aim of this study was to understand the effects of tablet location on the recruitment of muscles in the neck and upper extremities. Fifteen healthy volunteers typed the lyrics while listening to a song at three tablet locations for 5 min. An iPad 2 was randomly located at one of the levels with 70, 90, and 130 degrees of elbow flexion in sitting. Typing duration, frequency of typing error, perceived levels of fatigue, and subjective position preferences were recorded and recruitment of muscles in the neck and upper extremities was measured. Muscle recruitment of three parts of the trapezius and biceps brachii decreased and use of the levator scapula increased as the vertical level of the tablet heightened. Self‐reported discomfort increased significantly in the neck, upper back, shoulders, elbows, and wrists over time regardless of the tablet location. The table location affected the self‐reported discomfort only at the elbow joints. Subjective preference was highest at the lowest tablet location with the 130‐degree elbow flexion. The vertical levels of the tablet and typing duration independently affected the muscle recruitment and self‐reported discomfort. Findings of this study can be helpful for tablet users in preventing musculoskeletal disorders in the upper extremities.  相似文献   

11.
The self-organizing adaptive map algorithm is adopted to learn all possible postures for an artificial arm of arbitrary configuration placed in a three-dimensional workspace. Arm postures are represented through their projections onto a set of image planes. Based on the link orientation and link length extracted from these images, a topological state space Q is generated. Arm kinematics is expressed as a transformation of topological hypersurfaces, the intersections of which represents the multiple postures of the arm in the workspace for a given end effector position. The self-organizing feature map learns how the topological hypersurfaces transform in the state space during arbitrary movements of the arm in the workspace. During the learning phase, the neural network generates clusters of neurons, each neuron being responsible for reproducing an arm posture in the workspace. The neural clusters map the hypersurfaces' intersection in the topological Q-space to any position of the arm gripper in the workspace. Simulations for planar and nonplanar multiple degrees of freedom arms are presented.  相似文献   

12.
《Ergonomics》2012,55(9):1841-1850
Very little is known about the magnitudes and sources of errors associated with the visual estimation of postural classification displayed on TV screens. This study was conducted to address this issue. Sixty-three subjects participated in the experiments. The findings indicate that: (1) subjects found it difficult to evaluate upper extremity postures (particularly the elbow and the wrist), while the postures around the lower back were the easiest to evaluate; (2) the lower extremity positions affected the ability of the subjects to accurately classify postures around the wrist, elbow, shoulder, neck, and lower back, with the estimates being > 70% for sitting and > 60% for standing (except for the elbow); and (3) in general, flexion and extension are easier to evaluate than neutral and non-neutral postures.  相似文献   

13.
《Applied ergonomics》2014,45(2):278-284
Awkward back and shoulder postures have been suggested to be a cause of back and shoulder discomfort in carpet weavers. This study aimed at continuous assessment of the upper arm and back postures and estimation of biomechanical load subtasks using inclinometers during 4 h.Median of trunk flexion angle in weavers was 18° and 13° during knotting and compacting subtasks, respectively. The weavers worked with arms elevated greater than 45° for %4.5 of the work time. The average cumulative compression load for males and females were estimated at 22 MN-S and 13 MN-S, respectively.In addition to poor workstation design, constrained posture of the trunk and low elevation and velocity for both arms may be the main risk factors for developing fatigue and disorders in the back and shoulder regions among carpet weavers. Therefore, any ergonomic interventions should be focused on reducing trunk flexion and the constrained postures of weavers.  相似文献   

14.
《Ergonomics》2012,55(9):1851-1858
Constrained body postures are usually cited as the major cause of musculoskeletal static loading. Thus, the main goal of the present study was to develop a ranking system for the stressfulness of the non-neutral static postures around the wrist, elbow, shoulder, neck and lower back. This was based on the ratings of perceived discomfort. Sixteen men participated in the study. The results indicated that static postural stresses yielded varying effects on the discomforting rating levels. On the basis of these preliminary findings, a ranking system was developed for the stressfulness of non-neutral postures around the joints of the upper extremity and the spine.  相似文献   

15.
Kee D  Karwowski W 《Human factors》2002,44(4):530-544
The main objectives of this study were to quantify the range of reaching for the upper body with eight degrees of freedom (the trunk and shoulder, elbow, and wrist joints) and the lower body with six degrees of freedom (the hip, knee, and ankle joints). A sweeping algorithm that included trunk and foot motions was used to generate the analytical total reach volume of the human body for young men. Three types of reach volume--unconstrained arm reach, shoulder-restricted arm reach, and foot reach--were generated depending on the joint involved in reach activities. The robot kinematics methodology was employed to represent the human body as a multilink system, which was needed for calculating three-dimensional coordinates of the involved joints. The statistical test results showed that the total reach volume analytically generated in this study was nearly identical to that obtained from the direct human body measurements. Applications of this research include generating the human body's reach volume for the purpose of designing work spaces and products.  相似文献   

16.
Hand tools are widely used in a large number of occupations. Many workers have to use hand tools to accomplish their duties. This may cause work-related Upper Extremities Musculoskeletal Disorders (UEMSDs). The present study was conducted in Iranian hand-woven shoe industry to (a) investigate the design of hand tools currently used in hand-woven shoemaking operation and (b) design/redesign the tools' handles based on anthropometric tables and ergonomic principles. Based on Iranian workers' anthropometric tables, new handles with different shapes were designed and made for hand tools currently used in hand-woven shoemaking operation (e.g., awl and cloth cutting tool). Hand postures and postural comfort and discomfort were investigated via rating technique using Comfort Questionnaire for Hand Tools (CQH) and upper extremities body map. The results of CQH showed that the handle shape had a significant influence on the hand posture and perceived postural discomfort in the upper extremities. The new ergonomically designed handles were perceived to be more comfortable compared to the traditional ones. Additionally, the new handles improved the hand posture during the operation and reduced the severity of discomfort in the upper extremities compared to the tools with conventional handles. The findings of this study revealed that designing the hand tools’ handles based on ergonomic principles and using anthropometric tables could improve the hand posture, increase comfort, and decrease discomfort in the upper extremities. By this means, reduction in work-related UEMSDs is expected.  相似文献   

17.
Cumulative trauma disorders (CTDs) of the upper extremities are one of the major ergonomics areas of research. Pinching is a common risk factor associated with the development of hand/wrist CTDs. The capacity standards of peak pinch strength for various postures are needed to design the tasks in harmony with the workers. This paper describes the formulation, building and comparison of pinch strength prediction models that were obtained using two approaches: Statistical and artificial neural networks (ANN). Statistical and ANN models were developed to predict the peak chuck pinch strength as a function of different combinations of five elbow and seven shoulder flexion angles, and several anthropometric and physiological variables. The two modeling approaches were compared. The results indicate ANN models to provide more accurate predictions over the standard statistical models.  相似文献   

18.
Industrial assembly tasks often require awkward, sustained neck and/or shoulder postures that can lead to increased musculoskeletal discomfort and reduced productivity. The aim of this study was to investigate the effects of mirror and periscope visual aids as ergonomic interventions designed to eliminate awkward postures of the cervicobrachial region during assembly tasks. Participants simulated a simple assembly task by using a cordless screwdriver to drive screws into a pre-tapped aluminium block. Trials of 15 min were run for each of four distinct assembly workstation configurations: industry standard (in-line screwdriver, work at elbow height, no visual aid); pistol grip (pistol grip screwdriver, work at shoulder height, no visual aid); mirror (in-line screwdriver, work at elbow height, single mirror visual aid); and periscope (in-line screwdriver, work at elbow height, two-mirror visual aid system). Muscular activity, discomfort, body posture, productivity and operator subjective assessment were recorded to determine the effects of the visual aid interventions. The results show that when comparing the interventions to the industry standard condition, there was a 45% reduction in average cervical erector spinae activity, a 90% reduction in average neck flexion angle and a 72% reduction in neck discomfort with the interventions. When comparing these interventions to the pistol grip condition there was an 80% reduction in activity of the dominant side deltoid, a 92% reduction in shoulder flexion angle and an 81% decrease in shoulder discomfort with the interventions. Productivity was greatest in the industry standard configuration followed by the pistol grip (9% lower), the periscope (13% lower) and the mirror (23% lower) configurations. A follow-up study that compared the productivity of the periscope configuration with that of the industry standard configuration showed that within a 4-h work period this productivity differential decreased by over 33%.  相似文献   

19.
《Ergonomics》2012,55(2):215-228
Industrial assembly tasks often require awkward, sustained neck and/or shoulder postures that can lead to increased musculoskeletal discomfort and reduced productivity. The aim of this study was to investigate the effects of mirror and periscope visual aids as ergonomic interventions designed to eliminate awkward postures of the cervicobrachial region during assembly tasks. Participants simulated a simple assembly task by using a cordless screwdriver to drive screws into a pre-tapped aluminium block. Trials of 15 min were run for each of four distinct assembly workstation configurations: industry standard (in-line screwdriver, work at elbow height, no visual aid); pistol grip (pistol grip screwdriver, work at shoulder height, no visual aid); mirror (in-line screwdriver, work at elbow height, single mirror visual aid); and periscope (in-line screwdriver, work at elbow height, two-mirror visual aid system). Muscular activity, discomfort, body posture, productivity and operator subjective assessment were recorded to determine the effects of the visual aid interventions. The results show that when comparing the interventions to the industry standard condition, there was a 45% reduction in average cervical erector spinae activity, a 90% reduction in average neck flexion angle and a 72% reduction in neck discomfort with the interventions. When comparing these interventions to the pistol grip condition there was an 80% reduction in activity of the dominant side deltoid, a 92% reduction in shoulder flexion angle and an 81% decrease in shoulder discomfort with the interventions. Productivity was greatest in the industry standard configuration followed by the pistol grip (9% lower), the periscope (13% lower) and the mirror (23% lower) configurations. A follow-up study that compared the productivity of the periscope configuration with that of the industry standard configuration showed that within a 4-h work period this productivity differential decreased by over 33%.  相似文献   

20.
This paper introduces a fully portable, lightweight exosuit-type device for shoulder and elbow assistance. The main motivation of this research was to design a portable upper limb exosuit capable to assist dynamic rehabilitation tasks where patient can involve trunk motions and overground movements (e.g., during pick-and-place tasks). The proposed system provides assistance for shoulder flexion and abduction, as well as for elbow flexion. The mechanism is driven by DC motors which are worn on the wearer’s back, and the power is transferred from the actuators to the arm by means of cable-driven transmission. The unique features of the proposed exosuit are the absence of rigid links or joints around the arm, high compliance and portability. This paper describes operating principle and kinematic model of the proposed exosuit and provides force analysis and experimental evaluation of the manufactured device. As the result of this work, we performed a simulation of rehabilitation scenario with the developed wearable prototype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号