首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphene/ZnO nanocomposites were successfully synthesized by microwave-assisted method. The structure, morphology, optical and composition of the obtained samples were characterized using XRD, FT-IR, laser Raman, UV–Vis spectroscopy and XPS analysis. XRD analysis confirmed the presence of graphene/ZnO nanocomposite. FE-SEM image reveals that the homogenous distribution of ZnO nanoparticles on the graphene nanosheets. The electrochemical properties of the graphene/ZnO electrodes were analyzed by cyclic voltammetry and impedance spectroscopy. The results confirmed that the incorporation of ZnO nanoparticles enhanced the capacitive performance of graphene electrode. Graphene/ZnO nanocomposite electrode showed higher capacitance value of 109 F g−1 at a scan rate of 5 mV s−1 in 1 M KCl solution as compared to the graphene electrodes. These results demonstrated the importance and great potential of graphene based composites in the development of high-performance energy-storage systems.  相似文献   

2.
Titanate nanotubes/carbon composites(TNT/CCs) were synthesized by allowing carbon-coated TiO2 (CCT) powder to react with a dense aqueous solution of NaOH at 120 °C for a proper period of time. As-prepared CCT and TNT/CCs were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectrometry. The processes for formation of titanate nanotubes/carbon composites were discussed. It was found that the TiO2 particles in TiO2-carbon composite were enwrapped by a fine layer of carbon with a thickness of about 4 nm. This carbon layer functioned to inhibit the transformation from anatase TiO2 to orthorhombic titanate. As a result, the anatase TiO2 in CCT was incompletely transformed into orthorhombic titanate nanotubes upon 24 h of reaction in the dense and hot NaOH solution. When the carbon layers were gradually peeled off along with the formation of more orthorhombic titanate nanotubes at extended reaction durations (e.g., 72 h), anatase TiO2 particles in CCT were completely transformed into orthorhombic titanate nanotubes, yielding TNT/CCs whose morphology was highly dependent on the reaction time and temperature.  相似文献   

3.
ZnO:P nanobelts were self-assembly synthesized by thermal evaporation of Zn power and P2O5 mixture. The temperature dependence photoluminescence of ZnO:P nanostructures was studied from 81 to 291 K. As the temperature increased from 81 to 111 K, the PL intensity of DAP emission was obviously enhanced. The abnormal PL intensities were ascribed to the acceptor vibration with local phonon and lattice phonon assistant. The PL of zinc vacancy and its replica were well resolved due to the strenuous vibration of Zn vacancy. The replica of zinc vacancy emission increased while the visible emission gradually decreased with the temperature increase. It suggested that there were intensive deep acceptor vibration. The field emission properties of the ZnO:P nanostructures have been investigated according to the acceptor-related PL spectra. The influence of space charge effect on the field emission behaviors was also discussed.  相似文献   

4.
Silver-silica (with Ag 2.8 at.% and 8.7 at.%) nanocomposite (NC) thin films doped with Er+3 (0.1-0.9 at.%) were synthesized by atom beam co-sputtering using 1.5 keV Ar atoms. Optical absorption and photoluminescence (PL) studies of pristine and annealed films were performed, together with Rutherford backscattering and secondary ion mass spectroscopy studies for elemental characterization of the NC films. Optical absorption results of pristine and annealed NC film (with Ag ∼8.7 at.%) confirmed the formation of Ag nanoparticles evidenced by the appearance of characteristic surface plasmon resonance absorption features. Photoluminescence (PL) studies, carried out using Ar Laser pumping at 0.488 μm, the wavelength that the Er ions can absorb resonantly, indicated the presence of PL emission around 1.54 μm in the case of all the as-synthesized samples. The observed PL peak corresponds to the atomic transitions of Er as reported in literature. A relative enhancement in the intensity of PL peak has been observed after annealing the NC films. In the case of NC film with 0.9 at.% Er and 8.7 at.% Ag, the enhancement in PL intensity is almost twice, with respect to the as-deposited sample, for a heat treatment of about 1 h at 600 °C in a nitrogen atmosphere. However for a NC film with Er 0.1 at.% + Ag 2.8 at.%, the PL intensity is enhanced by approximately 3.7 times after annealing at 400 °C for 1 h in nitrogen atmosphere. Since the samples with surface plasmon resonance (SPR) did not show the PL enhancement, the role of SPR in the enhancement of the PL is ruled out. The enhanced PL emission from Er and Ag codoped silica indicates that the Er photo-stimulation is mediated by the energy transfer from Ag nanostructures or ions to Er. Lifetimes of PL peaks for the pristine and annealed samples were also studied. The observed lifetime ∼10 ms is a good indication of excellent PL efficiency.  相似文献   

5.
Polyaniline was synthesized via polyaniline/activated carbon (PANI/AC) composites by in situ polymerization and ex situ solution mixing. PANI and PANI/AC composite films were prepared by drop-by-drop and spin coating methods. The electrical conductivities of HCl doped PANI film and PANI/AC composite films were measured according to the standard four-point-probe technique. The composite films exhibited an increase in electrical conductivity over neat PANI. PANI and PANI/AC composites were investigated by spectroscopic methods including UV–vis, FTIR and photoluminescence. UV–vis and FTIR studies showed that AC particles affect the quinoid units along the polymer backbone and indicate strong interactions between AC particles and quinoidal sites of PANI. The photoluminescence properties of PANI and PANI/AC composites were studied and the photoluminescence intensity of PANI/AC composites was higher than that of neat PANI. The increase of conductivity of PANI/AC composites may be partially due to the doping or impurity effect of AC, where the AC competes with chloride ions. The amount of weight loss and the thermostability of PANI and PANI/AC composites were determined from thermogravimetric analysis. The morphology of particles and films were examined by a scanning electron microscope (SEM). SEM measurements indicated that the AC particles were well dispersed and isolated in composite films.  相似文献   

6.
Au-functionalized ZnSe nanorods were synthesized by the thermal evaporation of ZnSe powder followed by Au sputter-deposition and thermal annealing. Photoluminescence (PL) showed that the intensity of near-band edge (NBE) emission of ZnSe nanorods was enhanced remarkably by Au-coating and annealing in a H2 atmosphere. The intensity ratio of NBE emission to the deep level emission, INBE/IDL of Au-coated ZnSe nanorods after annealing in a H2 atmosphere was ∼68 times higher than that of the pristine (unannealed, uncoated) ZnSe nanorods. The increase in INBE/IDL might be due to a combination of carrier transfer from the defect level to the Fermi level of Au nanoparticles, surface plasmon resonance in Au nanoparticles and hydrogen passivated deep level defects.  相似文献   

7.
Novel ternary nanocomposite trialkoxysilane-capped poly(methyl methacrylate)/zirconia/titania optical films were successfully prepared through a nonaqueous in situ sol–gel method. The acrylic monomers used were methyl methacrylate (MMA) and 3-(trimethoxysilyl)propyl methacrylate (MSMA). PMMA/ZrO2–TiO2 incorporating networks formed from alcoholysis of poly(MMA-co-MSMA), zirconium n-butoxide and titanium isoproproxide. The structure, morphology and property of the obtained nanocomposite films were investigated by X-ray photoelectron spectra, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, scanning probe microscopy, thermogravimetric analyses, UV–vis spectrum and spectro-ellipsometer. The nanoparticle size, roughness, thermal stability, UV-shielding property, and refractive index of nanocomposite films increase with the increasing of inorganic contents. The formation mechanism and reason of such improvements were examined and interpreted in a theoretical model. The nanocomposite films possess interesting properties in thermal stability and optical response due to the uniform incorporating networks between organic polymer chains and inorganic clusters.  相似文献   

8.
In this study, the dielectric properties of PVA/ZnO nanocomposites films were evaluated. The composites were prepared by a solution casting technique. The dispersion and functionalization of the ZnO nanoparticles in the composite films were characterized by spectroscopic technique. The surface morphology of the PVA/ZnO nanocomposites films were elucidated using AFM. The charge transport properties were evaluated based on the dielectric and impedance spectroscopy techniques. Low ZnO loading composite shows low dielectric value at higher frequency and behaves as a lossless material. The complex impedance spectra suggest the change in conductivity, due to the change in bulk resistance of the materials and less relaxation time. Thus, all PVA/ZnO nanocomposites behave as lossless materials above 106 Hz indicating the composites are useful in microwave application.  相似文献   

9.
By heating zinc foil in an air-filled box furnace, one-dimensional ZnO nanorods, two-dimensional ZnO nanoplates and three-dimensional ZnO nanotetrapods were prepared by adjusting the temperature in the furnace in the ranges of 500–600, 650–750 and 800–900 °C, respectively. The morphologies, structures and emissions of the synthesized ZnO nanostructures were investigated by scanning electron microscopy, X-ray diffractometry, transmission electron microscopy, selected area electron diffraction and photoluminescence spectroscopy. Mechanisms on the control of the morphology and photoluminescence were discussed in terms of the crystal growth habits combined with the temperature-dependent diffusions of zinc and oxygen atoms in the ZnO lattices.  相似文献   

10.
This contribution presents two simple and cost-effective routes for the low-temperature and large-scale production of pure and Eu-doped Y3Al5O12 (yttrium aluminum garnet YAG) nanopowders. The proposed methodologies combine a mechanically assisted metathesis reaction or coprecipitation from solution followed by crystallization of the obtained precursors from molten sodium nitrate/nitrite. Both procedures allow obtaining pure and/or doped YAG nanopowders at remarkably low temperatures, i.e. already at 350 °C although firing at 500 °C is needed in order to get single phase and fully crystalline materials. As-obtained samples were characterized by XRD, TEM, Raman, IR and luminescence methods. These methods showed that the mean crystallite size is near 23–31 and 51 nm, when crystallization is performed from the amorphous precursor obtained by a mechanically assisted metathesis reaction and coprecipitation, respectively. Raman and IR spectra indicated better crystallinity of the powders prepared at 500 °C. The emission study showed that the intensity ratio between hypersensitive 5D0 → 7F2 and magnetic-dipole 5D0 → 7F1 transitions of Eu3+ is significantly larger than expected for well-crystallized YAG. Origin of this behavior is discussed.  相似文献   

11.
Multi-walled carbon nanotubes (MWNTs) were selectively etched in molten nitrate to produce short MWNTs (s-MWNTs). MnO2/s-MWNT nanocomposite was synthesized by a reduction of potassium permanganate under microwave irradiation. For comparative purpose, MnO2/MWNT nanocomposite was also synthesized and investigated for its physical and electrochemical performance. Uniform and conformal MnO2 coatings were more easily formed on the surfaces of individual s-MWNTs. MnO2/s-MWNT nanocomposite estimated by cyclic voltammetry (CV) in 0.5 M Na2SO4 aqueous solution had the specific capacitance as high as 392.1 F g−1 at 2 mV s−1. This value was more than 48.9% larger than MnO2/s-MWNT nanocomposite. In addition, MnO2/s-MWNT nanocomposite was also examined by repeating the CV test at a scan rate of 50 mV s−1, exhibiting an excellent cycling stability along with 99.2% specific capacitance retained after 1000 cycles. Therefore, MnO2/s-MWNT nanocomposite is a promising electrode material in the supercapacitors.  相似文献   

12.
Rhodamine B (Rh B), a kind of fluorescent dye, was encapsulated into the pores of various mesoporous silica materials through postgrafting method. Small angle X-ray diffraction (XRD), nitrogen adsorption–desorption and Fourier transform infrared (FTIR) spectrometry were used to characterize those composites. After encapsulation, the composites showed significant blue-shift in photoluminescence (PL) spectra. The extent of shift changed upon varying mesoporous silica host. This phenomenon is related to the topological structure of mesopores. For the first time, it was observed that not only the size, but also the structure and the curvature of the mesopores have a great influence on PL properties of the composites, and a possible mechanism was also provided.  相似文献   

13.
The triblock copolymer PEO–PPO–PEO is thermoresponsive and have demonstrated excellent properties to act as a reducing as well as capping agent for synthesis of metal nanoparticles. Effect of reaction temperature in growth, morphology and chemical properties of self-assembled structures of silver PEO–PPO–PEO nanocomposites on silicon substrates is described here. The polymer–metal composites are deposited on hydrophilic and hydrophobic silicon substrates through adsorption from solution at different temperatures. Morphologies of the nanocomposite films observed by SEM are strongly dependent on reaction temperature as well as on philicity/phobicity of silicon substrates. Detailed investigations of the chemical properties of nanocomposite materials are performed using XPS and NEXAFS. At lower reaction temperatures, mainly thermoresponsive behavior of the copolymer controls nanocomposite formation and their organization on the substrates. Whereas at higher reaction temperatures, chemical nature of the copolymer that directly take part in the reaction is changed drastically and alters the nanocomposite formation process as well as the nature of self-assembly. The resemblance in spectroscopic data of this modified/degraded copolymer with that of fatty acid molecules indicate formation of fatty acid-like molecules at higher temperature.  相似文献   

14.
A new, simple, low-temperature method for the synthesis of superparamagnetic, photocatalytic, nanocomposite particles for applications in the decomposition of pollutants in water is presented. The method is based on the coating of clusters of superparamagnetic maghemite (γ-Fe2O3) nanoparticles with a photocatalytic anatase layer using the hydrolysis of aqueous TiOSO4. The clusters of an appropriate size between 100 and 200 nm form by the simultaneous agglomeration of the aminopropyl-triethoxy-silane-grafted maghemite nanoparticles with a size of approximately 15 nm in a suspension of diluted TiOSO4. During a sudden increase of pH with the addition of NaOH the titania is heterogeneously nucleated at the cluster surfaces. If the hydrolysis was conducted at an elevated temperature of 90 °C, the titania layer was nanocrystalline anatase. The composition of the nanocomposite particles, i.e., the thickness of the anatase layer, can be controlled simply by changing the starting TiOSO4/Fe2O3 ratio for low titania contents, and by multiple coatings to get high titania contents. The photocatalytic activity of the nanocomposites was evaluated in the photocatalytic decomposition of formic acid. The activity seems to increase with an increase in the thickness and the crystallinity of the anatase coating, whereas it decreased after the calcination of the as-synthesized nanocomposite. The coating of the maghemite nanoparticles with a thin layer of insulating silica also slightly improves the photocatalytic activity.  相似文献   

15.
Arrays of ZnO nanowires (NWs) were fabricated within the well-distributed pores of anodic aluminium oxide (AAO) template by a simple chemical method. The photoluminescence (PL) and field emission (FE) properties of the AAO/ZnO NWs hybrid structure were investigated in detail. The hybrid nanostructure exhibits interesting PL characteristics. ZnO NWs exhibit UV emission at 378 nm and two prominent blue-green emissions at about 462 and 508 nm. Intense blue emission from the AAO template itself was observed at around 430 nm. Herein, for the first time we report the FE characteristics of the ZnO/AAO hybrid structure to show the influence of the AAO template on the FE property of the hybrid structure. It is found that the turn-on electric field of the vertically grown and aligned ZnO NWs within the pores of AAO template is lower than the entangled unaligned ZnO NWs extracted from the template. Although the AAO template exhibits no FE current but it helps to achieve better FE property of the ZnO NWs through better alignment. The turn-on electric field of aligned NWs was found to be 3 V μm−1 at a current of 0.1 μA. Results indicate that the AAO embedded ZnO NW hybrid structure may find useful applications in luminescent and field emission display devices.  相似文献   

16.
The surface characterization of CdTe QDs synthesized by a novel procedure using glutathione (GSH), low temperatures (60–90 °C) and K2TeO3 as the –Te precursor is reported. Fluorescence of the produced QDs is stable in the pH range 6–13 and QDs inside eukaryotic cells are highly fluorescent. The surface composition of GSH-CdTe QDs with different spectroscopic properties and particle size distributions was determined by XPS. The XPS analysis indicated that the QDs are essentially CdTe, although all nanoparticles contain 12–24% of CdO (and in one case also TeO2). GSH decomposes with reaction time releasing small amounts of S−2 ions that react with Cd(Te) to yield Cd(Te)S in a smaller amount than that of CdTe. Finally, the use of QDs in fluorescence mediated immunodetection of bacterial pathogens has been evaluated.  相似文献   

17.
We report on the temperature-dependent photoluminescence (PL) properties of n-type and p-type ZnO films codoped with N and Al. For the n-type film, the dominant emission at low temperature is exciton bound to neutral donors, while for the p-type film it is exciton bound to neutral acceptor at 3.33 eV. Four defect or impurity levels, including N acceptor, residual acceptor, and two doping-induced unknown deep acceptors, were identified. The energy level of the N acceptor was determined to be 0.23 eV. Excitation energy dependence of the PL was also investigated. It was found that at high excitation energy, the formation of exciton was suppressed by the formation of D+Aeh complexes.  相似文献   

18.
PbS nanoparticles and smooth nanocrystalline thin films (nc-PbS) were prepared by chemical precipitation from aqueous solutions. Polyethylene oxide and isopropyl alcohol were used as additives in the aqueous solution, which results in the enhancement of the blue luminescence of PbS thin films. The introduction of isopropyl reduced the grain size and increases the optical gap of the PbS particles. The size of PbS particles was estimated to be ~ 3.5 nm. The broad emission bands exhibited were composed by a multiple overlapping peaks. The photoluminescence (PL) intensity was significantly influenced by the excitation wavelength. Indeed, intense blue luminescence was obtained under 230 nm compared to that obtained under 325 nm excitation wavelength. The PL emission from PbS nanoparticles was less intense than the luminescence of PbS thin films. The high PL intensity of the thin films was attributed to the lower density of defects introduced in the thin films during the chemical bath deposition growth process compared the defects density of PbS powder.  相似文献   

19.
Photoluminescence of (0001) epitaxial ZnO films with thicknesses of 10, 30 and 100 nm on C-sapphire substrates have been studied at room temperature and after exposure to Ar, Ar–O2, Ar–N2 and Ar–H by remote microwave and radiofrequency plasmas. The photoluminescence are not modified by remote plasma treatments where only neutral species were involved. On the contrary, the photoluminescence signal is enhanced or quenched after radiofrequency plasma treatments when energetic ion species are involved in the surface treatment processes. Little changes of electric properties are observed, however, the optical transmission indicates that the absorption edge and probably also the index of refraction are affected. Photoluminescence peak shifts, widths and intensities changes show very strong similarities with polarized emission of ZnO single crystal where it exists a strong dichroism. The photoluminescence emission properties may then result from this optical modification. However, the plasma treatments on the different samples show very low stability in time, except, for the treatment in argon plasma alone. In this later case, in-situ monitoring of photoluminescence as a function of temperature revealed a partial recovery of the photoluminescence properties after a heat treatment at 400 °C for few minutes. These results indicate that photoluminescence of (0001) ZnO thin film, related to σ-emission polarized emission from c-axis polar surfaces, is highly affected by surface and implanted charged species.  相似文献   

20.
In this study both aligned and randomly oriented poly(d,l-lactide-co-glycolide) (PLGA)/chitosan nanofibrous scaffold have been prepared by electrospinning. The ratio of PLGA to chitosan was adjusted to get smooth nanofiber surface. Morphological characterization using scanning electron microscopy showed that the aligned nanofiber diameter distribution obtained by electrospinning of polymer blend increased with the increase of chitosan content which was similar to that of randomly oriented nanofibers. The release characteristic of model drug fenbufen (FBF) from the FBF-loaded aligned and randomly oriented PLGA and PLGA/chitosan nanofibrous scaffolds was investigated. The drug release rate increased with the increase of chitosan content because the addition of chitosan enhanced the hydrophilicity of the PLGA/chitosan composite scaffold. Moreover, for the aligned PLGA/chitosan nanofibrous scaffold the release rate was lower than that of randomly oriented PLGA/chitosan nanofibrous scaffold, which indicated that the nanofiber arrangement would influence the release behavior. In addition, crosslinking in glutaraldehyde vapor would decrease the burst release of FBF from FBF-loaded PLGA/chitosan nanofibrous scaffold with a PLGA/chitosan ratio less than 9/1, which would be beneficial for drug release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号