首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Excellent strength–ductility synergy of metallic materials is significant for their industrial applications. This study presents a fine-grained 316L stainless sheet (average grain size of ~5?µm) with a good combination of strength and ductility achieved via low-strain cold rolling (rolling strain of 30%). The fabricated steel sheet exhibits maximum yield strength and ultimate tensile strength values of 1045 and 1080?MPa, respectively, with a uniform elongation of 7%. Experimental results confirm that the high density of dislocations, strain-induced martensitic phase, and deformation twins together contribute to the high strength of the rolled stainless steel. Moreover, its good ductility is attributable to the strain-induced martensitic transformation and deformation twins.  相似文献   

2.
3.
The present study aims to investigate the influence of the addition of Ti and B in the form of five different grain refiners/aluminium master alloys (Al–10%Ti, Al–5%Ti–1%B, Al–2.5%Ti–2.5%B, Al–1.7%Ti–1.4%B and Al–4%B) in conjunction with that of Sr (as modifier) added in the form of Al–10%Sr master alloy to A356.2 alloy. Grain refinement of an A356.2 alloy with Ti and B additions in the ranges of 0.02–0.5% and 0.01–0.5%, respectively, was examined using these different types of grain refiners. Strontium additions of 30 and 200 ppm were made. All alloys were T6-heat treated before mechanical testing. Tensile and impact tests were conducted to evaluate the influence of the interaction between grain refiner and modifier on the mechanical properties. The properties were determined for both the as-cast and heat-treated conditions.  相似文献   

4.
Significant grain refinement in Mg-3Al alloy is achieved with the addition of charcoal due to the formation of Al4C3 particles, which act as effective nuclei for magnesium grains. Addition of 0.5 wt% charcoal has lead to reduced grain size of Mg-3Al alloy from 500 to 80 μm and no substantial grain refinement is obtained on further addition of charcoal. The results further reveal that the prolonged holding of the melt after the addition of charcoal has not affected the grain refining efficiency of Al4C3. Steady increase in tensile properties observed with increasing amount of charcoal addition has been attributed to the grain refinement and the presence of fine Al4C3 particles. The strengthening mechanisms due to charcoal addition are discussed in terms of Hall-Petch relation and dispersion strengthening. The predicted values are in good agreement with experimental results.  相似文献   

5.
热机械循环是复合材料所面临的苛刻空间环境因素.对B/Al复合材料进行温度变化范围为-125~125℃,外加拉伸载荷为30MPa的热机械循环试验,通过室温拉伸试验测量了B/Al复合材料的拉伸性能,利用SEM及TEM分析了复合材料的拉伸断口形貌及显微结构,研究了热机械循环对B/Al复合材料拉伸性能及显微结构的影响.研究表明,热机械循环造成了B纤维与Al基体之间界面的弱化,产生了可测的弹性模量的降低;同时,引起基体塑性应变,造成基体内位错密度增加.在热机械循环初期,B/Al复合材料的抗拉强度是增加的,但随即随热机械循环周次的增加而下降.  相似文献   

6.
The effect of Cr on the microstructure, tensile properties and creep resistance of as-cast Ti–48Al–xCr (x = 0, 2, 4 at.%) alloys were studied. The dependence of the tensile properties and creep resistance of as-cast TiAl on the solid solution strengthening and formation of β phase due to addition of Cr was investigated.  相似文献   

7.
8.
Abstract

In the present work, the potential for producing thin walled ductile iron castings with an ausferritic matrix is presented. Experimentally, thin walled iron castings of 2 mm in thickness were obtained and characterised by a nodule count of 1992 mm?2. In addition, a reference casting was produced with a 25 mm thick wall and a nodule count of 330 mm?2. Austenitising was carried out at 920°C, whereas austempering was implemented in the 300–400°C temperature range. The austenitising and austempering transformation rates were determined by dilatometry, and the results were confirmed by microstructural analyses. It was found that in thin walled castings, the austenitising and austempering times were reduced by either one-half or one-third of the ones corresponding to the reference casting. The exhibited mechanical properties of the thin walled castings were also determined as a function of austempering time and temperature. It was found that austempering at 300°C for 1200 s leads to thin walled castings with a tensile strength of 1500 MPa. Accordingly, from this work, it is plausible to produce high strength thin walled castings that satisfy all the ASTM 897M grades of ausferritic ductile iron through proper heat treating.  相似文献   

9.
Devitrified Al—transition metal—rare earth alloys offer routes to obtain higher volume fractions of dispersed strengthening phases than conventional precipitation routes. Here, we report a study of the microstructure–property relationships of an Al–Ni–Co–Y alloy processed by gas atomization and consolidated/devitrified by warm extrusion. Microstructural characterization by electron microscopy and serial section FIB tomography show that the alloy comprises an FCC Al matrix and 44 % by volume of elongated Al19(Ni,Co)5Y3 plates with the Al19Ni5Gd3 structure. The plates are aligned with the extrusion direction in the as-extruded alloy, and tensile data show a distinct anisotropy in yield strength and strain to failure. These data are consistent with the alloy acting more like a unidirectional short-fiber-reinforced metal–matrix composite than a conventional precipitation-hardened alloy. During axial upset forging, the ternary plates do not break up, but instead they rotate, until at large upset strains they lie perpendicular to their original orientation with corresponding changes in the tensile properties. The materials exhibit yield strengths of up to 713 MPa and tensile elongations of up to 5 %. Thus, such systems could form the basis for truly deformable high-strength low-density metal–matrix composites.  相似文献   

10.
Abstract

Hydrogen can be used as a temporary element to refine microstructure and improve workability of titanium alloys. In this article, the influence of hydrogen on the microstructure evolution and tensile properties of TC21 alloy is investigated. The microstructure observation reveals that the FCC hydrides δ precipitate firstly at the grainboundaries of primary α phases in TC21 alloy with hydrogen contents above 0·319 wt-%. These hydrides which block the grains deformation reduce both the strength and ductility at room temperature. With increasing hydrogen contents, the elevated temperature strength decreases first and then increases, while the ductility behaves the contrary. These are resulted from the interaction of hydrogen induced softening and hardening.  相似文献   

11.
This work was carried out to investigate the effect of different amounts of Zr on the microstructure and tensile properties of homogenized and hot extruded Al-15% Mg2Si composite using optical microscopy and scanning electron microscopy (SEM). The results showed that Zr addition has no significant effect on the morphology of both primary and eutectic Mg2Si phase in as-cast condition. But, applying homogenizing and extrusion processes changed the morphology of Mg2Si phases from irregular to a more spherical shape. Further results demonstrated that the average size of primary Mg2Si decreases with the addition of Zr up to 0.1% from 56 μm to 24 μm in hot-extruded condition. As the mount of Zr increased up to 0.1 wt.%, ultimate tensile strength (UTS) and elongation values were also increased from 160 MPa and 3.2% to 292 MPa and 9.5%, respectively. Fracture surface examinations revealed a transition from brittle fracture mode in as-cast composite to ductile fracture in hot-extruded Zr-modified specimens. This can be attributed to the changes in size and morphology of Mg2Si intermetallic and porosity content.  相似文献   

12.
The large 2219 Al alloy rings used to connect propellant tank components of a satellite launch vehicle to each other are conventionally manufactured by radial-axial ring rolling at 460°C with 50% deformation,but often suffer from coarse elongated grain and low ductility. An improved process(hot ring rolling at460°C with 30% deformation, then air cooling to 240°C, followed by ring rolling at 240°C with 20% deformation) was tested for ring manufacturing. The corresponding microstructure evolution and mechanical properties of the produced rings were studied. The results show that the improved process can successfully be applied to manufacture the large 2219 Al alloy rings without formation of macroscopic defects,resulting in a product with fine and uniform grains after heat treatment. The fracture mechanism of both rings was mainly intergranular fracture. With the resulting grain size refinement due to the improved process, more homogeneous slip occured and the crack propagation path became more tortuous during the tensile testing process. Thus, the elongation in all three orthogonal directions was greatly improved,and the axial elongation increased from 3.5% to 10.0%.  相似文献   

13.
Bending strength, fracture toughness, fracture energy and crack extension resistance were evaluated for Al2O3 ceramics with equi-axed and platelet grains. Bending strength was proportional to grain size–1/2, but flaws with a size of 10 m controlled the strength when the microstructure was finer than 10 m. Fracture toughness, measured by the single etched precracked beam (SERB) method, was proportional to fracture energy1/2, and increased with the grain size of Al2O3 ceramics with equi-axed and platelet grains. However, the toughness of platelet grain ceramics was higher than the ceramics with equi-axed grains, and increased up to 6.6 MPam1/2 with grain size. Therefore, it is thought that fracture toughness not only depends on grain size, but also on grain morphology; equations were derived to account for this phenomenon.  相似文献   

14.
An experimental investigation of the tensile properties of endchill castings of 319.2 commercial aluminium alloy was carried out to determine the effect of Sr modifier, TiB2 grain refiner and hydrogen content, and the resulting porosity on these properties. It was found that with respect to solidification time, the interaction effect of other parameters on the porosity followed the order H2 > Sr > TiB2. Pore nucleation and pore morphology were solidification time-dependent, with Sr addition enhancing the sphericity of the pores. Both ultimate tensile strength (UTS) and ductility were sensitive to variations in porosity and solidification conditions, while the yield strength remained practically unaffected. Increase in the porosity volume fraction above 0.5% reduced the ductility to negligible levels in the unmodified, non-grain refined base alloy. It was also observed that Sr modification and grain refining allow for an increase in the porosity level before the same level of degradation in ductility is reached.  相似文献   

15.
A coarse-grained (CG) Al6061 alloy after solution treatment is subjected to high pressure torsion at room temperature resulting in the formation of a homogeneous ultra-fine grained (UFG) microstructure with average grain size of 170 nm. Tensile tests are performed at room and liquid nitrogen temperatures for both CG and UFG conditions. Analysis of the surface relief of the tested specimens is performed. The effect of microstructure on the mechanical properties and on the deformation behavior of the material is discussed.  相似文献   

16.
This study was undertaken to investigate the effect of extrusion temperature on the microstructure and tensile properties of Al metal matrix composite (MMC) containing 16 wt% Al4Sr intermetallic. Microstructural examinations were assessed by the use of optical microscope, scanning electron microscope (SEM) and X-ray diffractometry (XRD). The results showed that hot extrusion with the ratio of 18:1 at 420 °C reduces the maximum length of Al4Sr particles from 222 μm to 35 μm. It was found that by applying extrusion parameters in optimum conditions, uniform distribution of fine Al4Sr intermetallic in Al matrix is obtained. Microstructural evolution also intensified the ultimate tensile strength (UTS) values of the MMC from 54 MPa to 145 MPa. Remarkable result of this study revealed that hot extrusion improves the ductility of the MMC significantly. Fractographic examinations of the composite in as-cast condition showed a complete cleavage fracture surface that changes to more homogenous dimples after hot extrusion process.  相似文献   

17.
Nanocrystalline NiO thin films have been grown on different substrates by RF magnetron sputtering with mixed O2?Ar plasma composition. The oxygen content of the plasma was varied between 0 and 100 %. The films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS). SEM results reveal a grain refinement when oxygen is added to the plasma. This effect can also be observed by XRD, where an analysis of the peak width confirms this decrease in the grain size. The analysis of EXAFS data shows that the presence of O2 in the plasma induces lattice disorder, as evidenced by the observed increase of the Debye–Waller factor. These microstructural changes modify the electronic structure of the NiO thin films. The spectral line shape in Ni 2p XPS spectra shows clear differences between samples grown with and without O2 in the plasma. These differences can be explained in terms of the observed structural changes.  相似文献   

18.
The work presented in this study was carried out on Al–Si–Cu–Mg 319-type alloys to investigate the role of solution heat treatment on the dissolution of copper-containing phases (CuAl2 and Al5Mg8Cu2Si6) in 319-type alloys containing different Mg levels, to determine the optimum solution heat treatment with respect to the occurrence of incipient melting, in relation to the alloy properties. Two series of alloys were investigated: a series of experimental Al–7 wt% Si–3.5 wt% Cu alloys containing 0, 0.3, and 0.6 wt% Mg levels. The second series was based on industrial B319 alloy. The present results show that optimum combination of Mg and Sr in this study is 0.3 wt% Mg with 150 ppm Sr, viz. for the Y4S alloy. The corresponding tensile properties in the as-cast condition are 260 MPa (YS), 326 MPa (UTS), and 1.50% (%El), compared to 145 MPa (YS), 232 MPa (UTS), and 2.4% (%El) for the base alloy with no Mg. At 520 °C solution temperature, incipient melting of Al5Mg8Cu2Si6 phase and undissolved block-like Al2Cu takes place. At the same time, the Si particles become rounder. Therefore, the tensile properties of Mg-containing alloys are controlled by the combined effects of dissolution of Al2Cu, incipient melting of Al5Mg8Cu2Si6 phase and Al2Cu phase, as well as the Si particle characteristics.  相似文献   

19.
Isothermal furnace heat treatments were carried out to simulate the microstructures of inter-critical, fine grain and coarse grain heat-affected zones of P91 steel weld joint at different soaking temperatures ranging from just above AC1 (837 °C) to well above AC3 (903 °C). Interrupted low cycle fatigue tests were performed on the specimens of P91 steel up to 5 %, 10 %, 30 %, and 50 % of the total fatigue life at the strain amplitude of ±0.6 %, strain rate of 0.003 s−1 and temperatures of 550 °C and 600 °C. Subsequently, tensile tests were conducted on the interrupt tested specimens at the same strain rate and temperatures. Soaking at the inter-critical temperature region reduces / deteriorates the tensile and yield strengths of base metal compared to fine grain and coarse grain regions. The inter-critical heat-affected zone accounted higher damage contribution towards the overall tensile behavior of the actual P91 steel weld joint. Substructural coarsening during strain cycling at elevated temperatures attributes to the rapid reduction in the initial yield strength up to 10 % of fatigue life of P91 steel. A higher amount of plastic strain accumulation during low cycle fatigue deformation resulted in a decrease in fatigue life of the inter-critical heat-affected zone of P91 steel.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号