首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study, mechanical behaviour and microstructural evolution in friction stir processing (FSP) of casting hypereutectic A390 aluminium alloy have been investigated. The mechanical behaviour of FSP samples was investigated by measuring the strain rate sensitivity using shear punch testing. The room-temperature shear punch tests were conducted at shear strain rates in the range of 10?4–10?1?s?1. The results indicate that the strain rate sensitivity index increases from about 0.015 to 0.120 for as-cast A390 after third FSP pass and then experiences a further growth in FSP passes. The increase in the grain size and CuAl2 intermetallic particle size result in a reduction in strain sensitivity index as well as shear strength after third FSP pass.  相似文献   

3.
Samples made of a super high strength aluminum alloy with high Zn content were friction stir welded with rotation rates of 350–950 rpm and welding speeds of 50–150 mm/min. The effect of welding parameters on the microstructure and mechanical properties was investigated. It was observed that the grain size of the nugget zones decreased with the increasing welding speed or the decreasing tool rotation rate. Most of the strengthening precipitates in the nugget zone were dissolved back and the intragranular and grain boundary precipitates in the heat affected zone coarsened significantly. The greatest ultimate tensile strength of 484 MPa and largest elongation of 9.4 were obtained at 350 rpm−100 mm/min and 350 rpm−50 mm/min, respectively. The ultimate tensile strength and elongation deteriorated drastically when rotation rate increased from 350 to 950 rpm at a constant welding speed of 100 mm/min.  相似文献   

4.
The effect of Friction Stir Welding on the fatigue behavior of Al–Mg–Sc alloy has been studied. To reveal the influence of the welding parameters, different travel speeds of the welding tool have been used to provide weld seams with varying microstructural features. Crack initiation as well as crack propagation behavior under fatigue loading has been investigated with respect to the local microstructure at the crack initiation sites and along the crack path. Fatigue cracks were mostly initiated around the stir zone and the adjacent thermo-mechanical affected zone independent from hardness distributions in the weld seams. In some specimens, defect-like feature was observed at the crack origins, which shortened the fatigue lives. It has been found that while the effect of the tool travel speed on the fatigue lifetime seems to be little, the varying and complex local microstructure in the weld seam basically affects both the crack initiation sites and the crack propagation paths.  相似文献   

5.
Abstract

The microstructure of the weld was examined by light and electron microscopy (scanning and transmission). The various regions, i.e. thermomechanically affected zone, heat affected zone and unaffected base material, were studied in detail to better understand the microstructural evolution during friction stir welding and its impact on basic mechanical properties. The change in morphology of the strengthening phases reflected the relative temperature profile and the amount of deformation across the welded joint during the stir welding process. The centre of the weld was composed of fine grains and coarse particles identified mainly as MgZn2. In the thermomechanically and heat affected zones, the grain size was not uniform, and the strengthening phases filled the grain interiors, while grain boundaries were surrounded by precipitation free zones. The size of the strengthening phase decreased towards the base material. The hardness profile of the friction stir weld displayed the lowest hardness on the retreating side. Tensile properties of the weld itself were superior to those for material containing weld.  相似文献   

6.
7.
The α + β titanium alloy, Ti–6Al–4V, was friction stir welded at a constant tool rotation speed of 400 rpm. Defect-free welds were successfully obtained with welding speeds ranging from 25 to 100 mm/min. The base material was mill annealed with an initial microstructure composed of elongated primary α and transformed β. A bimodal microstructure was developed in the stir zone during friction stir welding, while microstructure in the heat affected zone was almost not changed compared with that in the base material. An increase in welding speed increased the size of primary α in the stir zone. The weld exhibited lower hardness than the base material and the lowest hardness was found in the stir zone. Results of transverse tensile test indicated that all the joints had lower strength and elongation than the base material, and all the joints were fractured in the stir zone.  相似文献   

8.
The effect of tool rotation speed on microstructure and mechanical properties of friction stir welded joints was investigated for Ti–6Al–4V titanium alloy. Joints were produced by employing rotation speeds ranging from 400 to 600 rpm at a constant welding speed of 75 mm/min. It was found that rotation speed had a significant impact on microstructure and mechanical properties of the joints. A bimodal microstructure or a full lamellar microstructure could be developed in the weld zone depending on the rotation speeds used, while the microstructure in the heat affected zone was almost not influenced by rotation speed. The hardness in the weld zone was lower than that in the base material, and decreased with increasing rotation speed. Results of transverse tensile test indicated that all the joints exhibited lower tensile strength than the base material and the tensile strength of the joints decreased with increasing rotation speed.  相似文献   

9.
Aluminum matrix nanocomposites were fabricated via friction stir processing of an Al–Mg alloy with pre-inserted TiO2 nanoparticles at different volume fractions of 3%, 5% and 6%. The nanocomposites were annealed at 300–500 °C for 1–5 h in air to study the effect of annealing on the microstructural changes and mechanical properties. Microstructural studies by scanning and transmission electron microscopy showed that new phases were formed during friction stir processing due to chemical reactions at the interface of TiO2 with the aluminum matrix alloy. Reactive annealing completed the solid-state reactions, which led to a significant improvement in the ductility of the nanocomposites (more than three times) without deteriorating their tensile strength and hardness. Evaluation of the grain structure revealed that the presence of TiO2 nanoparticles refined the grains during friction stir processing while the in situ formed nanoparticles hindered the grain growth upon the post-annealing treatment. Abnormal grain growth was observed after a prolonged annealing at 500 °C. The highest strength and ductility were obtained for the nanocomposites annealed at 400 °C for 3 h.  相似文献   

10.
In this study, the effect of various feed speeds on microstructure and mechanical properties of friction stir welded Cu–30Zn brass alloy is investigated. Rotation speed was fixed at 950 rpm and feed speed varied in the range of 190–375 mm/min. Examination of the microstructure showed very fine grains with some deformed grains in the stirred zone and some coarser grains in the thermo-mechanically affected zone and base metal. A unique deformation pattern, namely “stir band” in the stirred zone region was identified and its density increased by increase in feed speed. Results showed that the grain size profile was independent of feed speed and the hardness values decreased by increase in feed speed. Increase in feed speed led to a slight improvement of yield strength and ultimate tensile strength, associated to continuous spring-like morphology of stir bands acting as a strengthening structure. However, ductility reduces considerably from 57 to 27%. Moreover, it is observed that during tensile test, fracture cracks originate exactly adjacent to the stir bands.  相似文献   

11.
The non-isothermal aging behaviour of a newly developed Al–Zn–Mg–Cu alloy containing 17?wt-% Zn was investigated. Hardness and shear punch tests demonstrated that during non-isothermal aging, the mechanical properties of the alloy first increased and then decreased. The best properties were obtained in a sample which was non-isothermally aged upto 250°C with heating rate of 20°C?min?1, due to the presence of η′/η (MgZn2) phases. This was confirmed by differential scanning calorimetery. After homogenisation, residual eutectic phases remained at triple junctions or in a spherical form. During aging, these phases transformed into rodlike S (Al2CuMg)-phase at 400°C, with sizes ranging from 50 to 250?nm. The precipitation sequence in this high-Zn alloy was similar to that for conventional Al–Zn–Mg–Cu alloys.  相似文献   

12.
In the present work, Al–Zn–Mg–Cu alloy was aged by non-isothermal cooling aging treatment (CAT). At high initial aging temperature (IAT), the hardness was decreased with the decreased cooling rate. However, when IAT was lower than 180 °C, the hardness was increased with the decreased cooling rate. Conductivity was increased with the decreased cooling rate regardless of IAT. The tensile strength, yield strength and conductivity of Al alloy after (200–100 °C, 80 °C/h) CAT were increased 2.9%, 8.1% and 8.3% than that after T6 treatment, respectively. With an increase of IAT and decrease of cooling rate, the fine GP zone and η′ phase were transformed to be larger η′ and η precipitates. Moreover, continuous η phase at grain boundary was also grown to be individual large precipitates. Cooling aging time was decreased about 90% than that for T6 treatment, indicating cooling aging could improve the mechanical properties, corrosion resistance and production efficiency with less energy consumption.  相似文献   

13.
The influences of rare earth (RE) on the microstructure and mechanical properties of Mg–7Zn–5Al alloy were studied. The results indicate that both the dendrite and grain size of the alloy can be refined by low RE addition. The Al2REZn2 phase will be formed with increasing the RE content, however the high RE addition results in the grain coarsening in the alloy due to the decrease of the contribution of Al and Zn solutes on the grain refinement. The strengthening and weakening mechanisms caused by RE addition only lead to the obviously improve on the room temperature ultimate tensile strength. The mechanical properties of the studied alloys can be improved by aging treatment, and the aged Mg–7Zn–5Al–2RE alloy exhibits optimal mechanical properties at room temperature.  相似文献   

14.
A Mg–Li–Al–Zn alloy was friction stir processed (FSP) under water, and the microstructures and superplastic behavior in the FSP alloy were investigated. The FSP Mg–Li–Al–Zn alloy consisted of a mixed microstructure with fine, equiaxed, and recrystallized α (hcp) and β (bcc) grains surrounded by high-angle grain boundaries, and the average grain size of the α and β grains was ~1.6 and ~6.8 μm, respectively. The fine α grains played a critical role in providing thermal stability for the β grains. The FSP Mg–Li–Al–Zn alloy exhibited low-temperature superplasticity with a ductility of 330 % at 100 °C and high strain rate superplasticity with ductility of ≥400 % at 225–300 °C. Microstructural examination and superplastic data analysis revealed that the dominant deformation mechanism for the FSPed Mg–Li–Al–Zn alloy is grain boundary sliding, which is controlled by the grain boundary diffusion in the β phase.  相似文献   

15.
A flawless bulk AZ31 magnesium alloy with extensive mechanical twins was produced by variable-plane rolling, in which the sample was rotated 90° around its longitudinal axis between passes. The unique orientation relationship between the parent grains and the twin grains favours twinning during variable-plane rolling, which leads to the formation of extensive twins. Tensile testing revealed an excellent balance of mechanical properties, with a yield strength of 280 MPa and 15.5% elongation to failure. The significant strengthening originates from the effective blockage of glide dislocations by numerous conventional grain boundaries and twin boundaries. A weak double-peak (slightly off-basal) texture is formed during variable-plane rolling, which helps in achieving the desired level of ductility.  相似文献   

16.
A new type of Al–Zn–Mg–Cu alloy sheets with T6 temper were welded by laser beam welding (LBW). Microstructure characteristics and mechanical properties of the joints were evaluated. Results show that grains in the heat affected zone (HAZ) exhibit an elongated shape which is almost same as the base metal (BM). A non-dendritic equiaxed grain zone (EQZ) appears along the fusion line in the fusion zone (FZ), and grains here do not appear to nucleate epitaxially from the HAZ substrate. The FZ is mainly made up of dendritic equiaxed grains whose boundaries are decorated with continuous particles, identified as the T (AlZnMgCu) phase. Obvious softening occurs in FZ and HAZ, which mainly due to the changes of nanometric precipitates. The precipitates in BM are mainly η′, while plenty of GPI zones exist in FZ and HAZ adjacent to FZ, in the HAZ farther away from FZ, η phase appears. The minimum microhardness of the joint is always obtained in FZ at different times after welding. The ultimate tensile strength of the joint is 471.1 MPa which is 69.7% of that of the BM. Samples of the tensile tests always fracture at the FZ.  相似文献   

17.
Abstract

A large scale billet with diameter of 58·5 mm of an as cast Al–Mg–Mn alloy was processed by equal channel angular pressing (ECAP) at 350°C up to six passes. A significant refinement of the grains was observed after six pressings to ~2 μm. And the selected area electron diffraction (SAED) pattern showed that almost all of the grains were separated by boundaries with high angles of misorientation. A banded substructure was not observed during the hot ECAP, and a reasonably equiaxed structure was obtained just after one single pressing. Both the strength and the elongation increased abruptly in a single passage through the die, but thereafter, the increase was more gradual and exhibited a saturation effect after the fourth pressing. The good combination of strength and ductility of the Al–Mg–Mn alloy attained by the hot ECAP appeared to be attractive properties for industrial applications. Moreover, hot ECAP could possibly be used as an alternative step to hot extrusion or hot rolling in industrial processing, to break down an initial coarse as cast structure in a quite large scale billet.  相似文献   

18.
Experiments were carried out to determine the effects of friction stir welding on microstructure and properties of recycled Aluminum 6061 alloy, whose alloy content varied from that of primary alloy. The alloy was processed at tool speed and feed ranges of 530 rev/min–1320 rev/min and 40 mm/min–100 mm/min respectively. Microstructure examination; tensile test and Vickers microhardness evaluation were carried out. Microstructure of the alloy was in four zones including: base metal, heat affected zone, thermo-mechanically affected zone and stirred zone. Average grain size of unprocessed material was 93 μm. Processing the alloy at 530 rev/min and 100 mm/min resulted in grains of average size 93 μm, 183 μm and 7 μm; in base metal, heat affected zone and stirred zone respectively. Tensile failure occurred in heat affected zone; that was exposed to high heat. The alloy hardness decreased to a minimum in heat affected zone, followed by a brief rise in thermo-mechanically affected zone, to another maximum in stirred zone. Processed zone hardness was inversely proportional to tool speed and directly proportional to feed rate. Increase in the speed and decrease in feed, increased heat which deteriorated the properties.  相似文献   

19.
A University and Industry collaborative research project was undertaken to evaluate the performance of as friction stir welded (FSW) and friction stir welded-superplastically formed Ti–6Al–4V alloy sheets. The purpose of this particular effort was to evaluate the tensile properties of friction stir welded and superplastically formed friction stir welded Ti–6Al–4V. Welds were produced out of both standard grain and fine grained titanium and tested in the as welded, stress relieved (SR) and superplastically formed (SPF) conditions. The preliminary results of the FSW and post FSW–SPF joint were found to be close to that of as received titanium with respect to strength, but elongations were decreased.  相似文献   

20.
In order to clarify the possibility of Zr substitution for Sc on the modification of Al-Si casting alloys, the microstructural evolution and tensile properties of Al-Si-Mg based alloys with different combinations of Sc and Zr contents (Sc + Zr = 0.5 wt.%) were systematically investigated. It was found that 0.5 wt.% Sc addition could refine the microstructure significantly and modify the eutectic Si from plate-like morphology to fiber, which promotes the spheroidization of eutectic Si during heat treatment. When Zr was added to partly replace Sc, the microstructure was first further refined, but was then slightly coarsened with increasing Zr content. Moreover, high Zr content was found to decrease its modification on eutectic Si. It was observed that Zr can also concomitantly improve strength and ductility compared with the alloy modified by Sc only. The improvement of mechanical properties was attributed to microstructural refinement, particularly the modification of eutectic Si and precipitation of secondary nano-scale Al3(Sc1  xZrx) dispersoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号