首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We report on the microstructure and optical properties of AlxOy–Pt–AlxOy interference-type multilayer films, deposited by electron beam (e-beam) deposition onto corning 1737 glass, silicon (1 1 1) and copper substrates. The structural properties were investigated by Rutherford backscattering spectrometry, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The optical properties were extracted from specular reflection/transmission, diffuse reflectance and emissometer measurements. The stratification of the coatings consists of a semi-transparent middle Pt layer sandwiched between two layers of AlxOy. The top and bottom AlxOy layers were non-stoichiometric with no crystalline phases present. The Pt layer is in the fcc crystalline phase with a broad size distribution and spheroidal shape in and between the rims of AlxOy. The surface roughness of the stack was found to be comparable to the inter-particle distance. The optical calculations confirm a high solar absorptance of ∼0.94 and a low thermal emittance of ∼0.06 for the multilayer stack, which is attributed not only to the optimized nature of the multilayer interference stacks, but also to the specific surface morphology and texture of the coatings. These optical characteristics validate the spectral selectivity of the AlxOy–Pt–AlxOy interference-type multilayer stack for use in high temperature solar-thermal applications.  相似文献   

2.
The elastic properties of two series of lanthanum aluminosilicate glasses (15La2O3-xAl2O3-(85−x)SiO2 and 25La2O3-yAl2O3-(75−y)SiO2, where x, y=15, 20, 25, 30, 35 mol%), were obtained by the ultrasonic pulse-echo technique, at room temperature. The correlation of elastic stiffness, the cross-link density, and the fractal bond connectivity of these glasses are discussed. The derived experimental values of Young’s modulus, bulk modulus, shear modulus and Poisson’s ratio for our glasses are compared with those theoretically calculated values in terms of the Makishima-Mackenzie model.  相似文献   

3.
The energies of mixing of quaternary compounds of the Al x In y Ga1 − xy N system with crystal structures of the zinc-blende type have been calculated using direct numerical simulations within the framework of the valence forced field model. An analytical approximation of the results of numerical calculations is proposed and the parameters of configurational dispersion of the mixing energy are refined, which are necessary for determining the thermodynamic functions of the quaternary compounds under consideration.  相似文献   

4.
Co-Pt-Ti-O films were prepared on SiO2 glass substrate by sputtering of a Co-Pt-Ti composite target in Ar+O2 atmosphere with the total pressure of 4 Pa and then in situ annealed at an elevated temperature Ta to form the CoxPt1−x-TiO2 films. It is found that the ferromagnetic films grow in the form of fiber-like columnar grain about 10 nm in diameter when sputtered in the pressure ratio of O2/Ar=1/133 followed by in situ annealing at The films contain Pt and amorphous anatase-type TiO2 phases besides the ferromagnetic fcc-CoxPt1−x phase. Thus, such nanocomposite films show photoconductive properties due to the anatase-type TiO2 phase as well as ferromagnetic properties due to the CoxPt1−x phase.  相似文献   

5.
Al2O3 and AlPxOy dielectric layers have been deposited on n-type InP substrates and the electrical properties of the interfaces have been evaluated by current-voltage and capacitance-voltage (C-V) measurements on metal- insulator-semiconductor diodes. Layers were deposited by combining trimethyl- aluminum, oxygen and phosphine in a low pressure chemical vapor deposition reactor in which the oxygen was excited in an r.f. plasma prior to mixing with the reactive gases in the deposition zone. The Al2O3 layers were invariably too conductive for meaningful C-V measurements; however, the AlPxOy layers not only were of high resistivity (? > 1016 Ω cm) but also exhibited interfacial properties superior to those of SiO2 layers on InP. The surface potential could be modulated over the full band gap of InP since the surface density was less than 1011 cm-2 eV-1 over much of the band gap.  相似文献   

6.
We have studied the electronic, structural, and elastic properties of Ti1−xySixAlyN metastable phase, using first principles calculations based on the density functional theory. These calculations provide the lattice parameter, density of states, cohesive energy, formation energy and elastic constants, when Si and Al atoms replace Ti in the TiN lattice. The calculated values of lattice parameters and elastic constants are generally in good agreement with experiments and compare well with other theoretical results. We show that the trend followed by cohesive energy, formation energy, elastic constants is related to the electronic properties and bonding characteristics of these compounds.  相似文献   

7.
It is shown that isothermal heat treatment of (Ni-Pt)/Si and Pt/Ni/Si heterostructures leads to the formation of oriented Ni-and Pt-based silicide solid solutions. Owing to the three equivalent azimuth orientations in the basic lattice orientation relationship for the Si-Ni1?x PtxSi system, the resulting silicides have a nanocrystalline substructure. The stability of the substructure is due to the optimal interfacial lattice match and near-special grain-boundary misorientations. The silicide phases Ni1?x PtxSi and Pt1?y NiySi (or Ni1?x PdxSi and Pd1?y NiySi) may undergo segregation, having the same lattice orientation. In both systems, the segregation is associated with the predominant Ni diffusion. The second component (Pt) is shown to stabilize the orthorhombic Ni-based silicide and to prevent NiSi2 formation. Photon processing accelerates diffusion and leads to the formation of phase-pure Ni1?x PtxSi solid solutions.  相似文献   

8.
The (In15Sb85)100−xBix films (x = 0–18.3) were deposited on nature oxidized Si wafer and glass substrate at room temperature by magnetron co-sputtering of Sb target and InBi composite target. The optical and thermal properties of the films were examined by reflectivity thermal analyzer. Microstructures of the films were analyzed by X-ray diffraction and transmission electron microscope. The crystallization activation energy of the (In15Sb85)100−xBix film (x = 0–18.3) was decreased with increasing Bi content, this indicated that the crystallization speed was improved by doping Bi. The structure of as-deposited (In15Sb85)100−xBix films was amorphous and it would transform to Sb, InSb, Bi, and BiIn2 coexisting phases after annealing at 250 °C for 30 min.  相似文献   

9.
J. Kova?  P. Panjan  A. Zalar 《Vacuum》2007,82(2):150-153
WxCy thin films with different compositions were studied in order to correlate their properties with the thin-film composition and chemical bonding of C and W atoms. Three WxCy thin films with C concentrations in the range 40-80 at% were deposited on WC-Co substrates by the plasma beam sputtering technique. The composition of the thin films and chemical states of elements were analysed by X-ray photoelectron spectroscopy (XPS) depth profiling. The C and W concentrations in the films were quantified using XPS intensities from a WC-Co substrate with a known composition. The C1s peaks in the high energy resolution XPS spectra of thin films allowed identification of the WC phase and the amorphous carbon phase as a function of the film composition. The results show that the amorphous carbon a-C phase is present in those films with composition x<y. The measured hardness of the films decreases with a decrease of the WC concentration.  相似文献   

10.
D. He?man 《Vacuum》2006,81(3):285-290
This article reports on the characterization and preparation of N-doped titanium dioxide (TiO2) films by reactive magnetron sputtering from Ti(99.5) targets in a mixture of Ar/O2/N2 atmosphere on unheated glass substrates. A dual magnetron system supplied by a dc bipolar pulsed power source was used to sputter the TiOxNy films. The amount of N in the TiOxNy film ranges from 5 to 40 at%. Its structure was measured using X-ray diffraction (XRD), the optical band gap was calculated from Tauc plots and the decrease of the water contact angle αir after the film activation by UV irradiation was investigated as a function of at% of N in the TiOxNy film. The yellow-coloured TiOxNy films with high (≈8 at%) amount of N exhibited a strong decrease of the band gap Eg down to 2.7 eV. A significant decrease of the water contact angle αir after UV irradiation has been observed for 2 μm thick transparent nanocrystalline (anatase+rutile) N-doped TiO2 films containing less than 6 at% of N.  相似文献   

11.
SiOxCyHz thin films were deposited from hexamethyldisiloxane (HMDSO)/O2 mixtures in a parallel plate, capacitively coupled, RF plasma reactor. Polyethylene terephthalate (PET), Si(1 0 0) wafers and KBr tablets were chosen as substrates. Effect of HMDSO/O2 ratio, total treatment pressure and power input on the properties of the deposited films were investigated. The structure and bondings were studied by means of Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Wettability characteristics of the deposited thin films were investigated by means of water droplet contact angle measurements. Surface morphology was investigated with atomic force microscopy. Barrier properties of the SiOxCyHz thin films were investigated by measuring the water vapour transmission rate of the coated PET substrates. Correlations between the characteristics of the deposited film and their barrier properties were discussed.  相似文献   

12.
MoNxOy films were deposited on steel substrates by dc reactive magnetron sputtering. The depositions were carried out from a pure molybdenum target, varying the flow rate of reactive gases. X-ray diffraction (XRD) results revealed the occurrence of cubic MoNx and hexagonal (δ-MoN) phases for the films with high nitrogen flow rates. The increase of oxygen content induces the decrease of the grain size of the molybdenum nitride crystallites. The thermal stability of a set of samples was studied in vacuum, for an annealing time of 1 h, for temperatures ranging from 500 to 800 °C in 100 °C steps. The results showed that pure molybdenum nitride films changed their structure from a meta-stable cubic MoN to hexagonal δ-MoN and cubic γ-Mo2N-type structures with increasing annealing temperatures. The samples with molybdenum nitride films evidenced a good thermal stability, but those with molybdenum oxynitride coatings showed a tendency to detach with the increase of the annealing temperature.  相似文献   

13.
Spectrally selective AlxOy/Pt/AlxOy multilayer absorber coatings were deposited onto corning 1737 glass, Si (111) and copper substrates using electron beam (e-beam) vacuum evaporator at room temperature. The employment of ellipsometric measurements and optical simulation was proposed as an effective method to optimize and deposit multilayer solar absorber coatings. The optical constants (n and k) measured using spectroscopic ellipsometry, showed that both AlxOy layers, which used in the coatings, were dielectric in nature and the Pt layer was semi-transparent. The optimized multilayer coatings exhibited high solar absorptance α ∼ 0.94 ± 0.01 and low thermal emittance ? ∼ 0.06 ± 0.01 at 82 °C. The Rutherford backscattering spectroscopy (RBS) data of AlxOy/Pt/AlxOy multilayer absorber indicated the AlxOy layers present in the coating were nearly stoichiometry. The scanning electron microscope analysis (SEM) result indicated that the average diameter and inter-particles distance of Pt grains were statistically about 146 ± 0.17 nm and 6-10 ± 0.2 nm respectively.  相似文献   

14.
The structural stabilities, elastic and electronic properties of 5d transition metal mononitrides (TMNs) XN with (X = Ir, Os, Re, W and Ta) and 5d transition metal monocarbides (TMCs) XC with (X = Ir, Os, Re and Ta) were investigated using the full-potential linear muffin-tin orbital (FP-LMTO) method, in the framework of the density functional theory (DFT) within the local density approximation (LDA) for the exchange correlation functional. The ground state quantities such as the lattice parameter, bulks modulus and its pressure derivatives for the six considered crystal structures, Rock-salt (B1), CsCl (B2), zinc-blend (B3), Wurtzite (B4), NiAs (B81) and the tungsten carbides (Bh) are calculated. The elastic constants of TMNs and TMCs compounds in its different stable phases are determined by using the total energy variation with strain technique. The elastic modulus for polycrystalline materials, shear modulus (G), Young's modulus (E), and Poisson's ratio (ν) are calculated. The Debye temperature (θD) and sound velocities (vm) were also derived from the obtained elastic modulus. The analysis of the hardness of the herein studied compounds classifies OsN – (B4 et B81), ReN – (B81), WN – (B81) and OsC – (B81) as superhard materials. Our results for the band structure and densities of states (DOS), show that TMNs and TMCs compounds in theirs energetically and mechanically stable phase has metallic characteristic with strong covalent nature Metal–Nonmetal elements.  相似文献   

15.
16.
Polymorphous Fe/FexOy core–shell and urchin-like composites were synthesized via a facile oxidation process at relatively low temperatures (100–300 °C) in the absence of surfactants or an external magnetic field. The oxidation temperature plays a key role in determining the morphology, crystal size, and composition of the resulting products. The static magnetic and electromagnetic (EM) properties of Fe/FexOy composites are influenced by their morphology, crystal size, and composition. In this study, excellent soft magnetic properties and enhanced permeability were obtained from core–shell Fe/FexOy composites with low FexOy shell contents and low surface anisotropy. In contrast, high coercivity and dielectric performance were exhibited by urchin-like Fe/FexOy composites with high shape and surface anisotropy. This work provides insights into the absorption mechanism of urchin-like complex absorption materials.  相似文献   

17.
In this work, density functional theory calculations on the structural, mechanical, and lattice dynamical properties of AgB2 and AuB2 compounds in AlB2, OsB2, and ReB2 structures are reported. Generalized gradient approximation has been used for modeling exchange-correlation effects. The detailed information is given for the energetically most stable structure for AgB2 and AuB2 compounds. Specifically, the lattice parameters, bulk modulus, cohesive energies, elastic constants, shear modulus, Young’s modulus, Poison’s ratio, Debye temperature, sound velocities, and anisotropic factors are studied. The elastic properties are also studied under pressure. The phonon dispersion curves and corresponding phonon density of states are calculated and discussed. Our structural and some other results are in agreement with the available experimental and theoretical data.  相似文献   

18.
The Al doping effects on high-frequency magneto-electric properties of Zn1 − x − yAlxCoyO (x = 0-10.65 at.%) thin films were systematically studied. In the current work, the Zn1 − x − yAlxCoyO thin films were deposited by magnetron co-sputtering onto quartz substrates. The magneto-impedance spectra of the thin films were measured by an impedance analyzer. Among all the doped films studied, the thin film with 6.03 at.% Al-doping showed the highest ac conductivity and relaxation frequency. To characterize the relaxation mechanism underlying the magneto-electric properties, a Cole-Cole impedance model was applied to analyze the impedance spectra. The analyzed result showed that the magneto-impedance of the Zn1 − x − yAlxCoyO is contributed by multiple processes of magnetization dynamics and dielectric relaxation. The results imply that Zn1 − x − yAlxCoyO may be applicable for high-frequency magneto-electric devices.  相似文献   

19.
R.F. Zhang 《Thin solid films》2008,516(8):2264-2275
Bulk properties of stable binary fcc-TiN and hcp(β)-Si3N4, hypothetical fcc-SiN and hcp(β)-Ti3N4, and ternary Ti1 − xSixNy phases are calculated by ab initio method. The values of total energies are then used for thermodynamic calculations of the lattice instabilities of hypothetical binary phases of fcc-SiN and hcp-Ti3N4, and of the interaction parameters of ternary Ti1 − xSixNy phases. Based on these data, Gibbs free energy diagrams of the quasi-binary TiNy-SiNy system are constructed in order to study the relative phase stability of the metastable ternary fcc- and hcp-Ti1 − xSixNy phases over the entire range of compositions. The results are supported by the published data from chemical and physical vapor deposition experiments. The constructed Gibbs free energy diagram and phase selection diagram of quasi-binary TiNy-SiNy system in fcc structure show that metastable fcc-Ti1 − xSixN coatings should undergo chemically spinodal decomposition into coherent fcc-TiN and fcc-SiN. Due to a high lattice mismatch between fcc-TiN and hcp-Si3N4, and to much higher lattice instability of fcc-SiN with respect to stable hcp-Si3N4, only about one monolayer of pseudomorphic SiNy interfacial phase is stable.  相似文献   

20.
A series of Eu2+ activated luminescent materials according to the composition of Ba2−xEuxZr2−yHfySi3O12 were synthesized using a high temperature solid-state reaction method starting from metal oxides and carbonates. Single phase powders were obtained using two annealing steps and boric acid as a flux. Firstly, starting materials were sintered at 1450 °C for 5 h under CO atmosphere and subsequently annealed at 1200 °C for 5 h under N2/H2 (95%/5%) gas flow. All samples were characterized by powder X-ray diffraction (XRD) analysis, thermal quenching (TQ), fluorescence lifetime measurements and photoluminescence (PL) techniques. Moreover, emission colour points, luminous efficacies and quantum efficiencies (QE) were calculated and discussed as a function of Eu2+ concentration and Zr/Hf ratio of the host lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号