首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the ballistic performance of single, two-, three- and four-layered steel plates impacted by ogival-nosed projectiles were experimentally investigated. Thin multi-layered plates arranged in various combinations of the same total thicknesses were normally impacted with the help of a gas gun. Ballistic limit velocity for each configuration target was obtained and compared based on the investigation of the effect of the air gap between layers, the number, order and thickness of layers on the ballistic resistance of targets. The results show that the thin monolithic targets have greater ballistic limit velocities than multi-layered targets if the total thickness less than a special value, and also the ballistic limit velocities of multi-layered targets decrease with the increase of the number of layers. Otherwise, the moderate thickness monolithic targets give lower ballistic limit velocities than multi-layered targets. Furthermore, the ballistic limit velocities of in-contact multi-layered targets are greater than those of spaced multi-layered targets. The order of layers affects the ballistic limit velocities of multi-layered targets, the ballistic resistance of the multi-layered targets is better when the first layer is thinner than the second layer.  相似文献   

2.
为了分析板间间隙大小对双层板失效模式以及抗侵彻性能的影响,本文利用轻气炮进行了卵形杆弹正撞击单层板和等厚双层板的实验研究,得到了各种结构靶体的初始-剩余速度曲线和弹道极限速度。实验表明,对于卵形弹,单层板的弹道极限高于双层板的弹道极限,包括接触式和间隙式。当总厚度一定时,多层板的弹道极限随分层数目的增加而减小。此外,间隙大小对间隙式双层板的抗侵彻性能影响小,并且随着弹体初始速度的增加而减小。  相似文献   

3.
Three-dimensional FE model is presented for perforation under normal and oblique impact of sharp nosed projectiles on single and layered ductile targets. Numerical simulations have been carried out to study the behavior of Weldox 460 E steel and 1100-H12 aluminum targets impacted by conical and ogive nosed steel projectiles respectively. Weldox 460 E steel targets of 12 mm thickness in single and double layered combination (2 × 6 mm) and 1100-H12 aluminum targets of 1 mm thickness in single and double layered combination (2 × 0.5 mm) impacted at 0°, 15° and 30° obliquity were considered for simulations. The results of monolithic and layered targets were compared for each angle of impact. Monolithic targets were found to have higher ballistic resistance than that of the layered in-contact targets of equivalent thickness. Failure of both the targets occurred through ductile hole enlargement. However, ogive nosed projectile failed 1 mm thick aluminum target through petal formation and conical nosed projectile failed 12 mm thick steel target through a circular or elliptical hole enclosed by a bulge at rear surface. The explicit algorithm of ABAQUS finite element code was used to carry out the numerical simulations. Various parameters which play critical role in numerical simulation such as element size and its aspect ratio have been studied.  相似文献   

4.
为研究弹体头部形状对碳纤维层合板抗冲击性能的影响,利用一级气炮发射卵形头弹、半球形头弹和平头弹,对2 mm厚碳纤维层合板进行了冲击实验。利用公式拟合处理实验数据,揭示弹体头部形状对靶板弹道极限与能量吸收的影响,并且分析靶板冲击损伤形貌及机理特征。研究结果表明:平头弹弹道极限最高,半球形头弹次之,卵形头弹最低。弹体在低速度冲击时,弹体头部形状对靶板能量吸收率的影响更为显著。平头弹冲击时,靶板迎弹面受到均匀分布的环向剪切力,纤维同时被剪切,基体发生大面积剪切破坏。半球形头弹冲击时,靶板迎弹面受到非均匀分布的剪切力和挤压作用,纤维发生剪切断裂和拉伸断裂,基体发生剪切破坏和挤压破碎。卵形头弹冲击时,纤维发生单一的拉伸断裂,而基体则发生挤压破碎。弹体头部形状对靶板损伤的影响主要集中在迎弹面和中部纤维层。  相似文献   

5.
M. A. Iqbal  N. K. Gupta 《Strain》2011,47(Z1):e205-e219
Abstract: This paper presents an experimental and finite‐element investigation of ballistic limit of thin single and layered aluminium target plates. Blunt‐, ogive‐ and hemispherical‐nosed steel projectiles of 19 mm diameter were impacted on single and layered aluminium target plates of thicknesses 0.5, 0.71, 1.0, 1.5, 2.0, 2.5 and 3 mm with the help of a pressure gun to obtain the ballistic limit in each case. The ballistic limit of target plate was found to be considerably affected by the projectile nose shape. Thin monolithic target plates as well as layered in‐contact plates offered lowest ballistic resistance against the impact of ogive‐nosed projectiles. Thicker monolithic plates on the other hand, offered lowest resistance against the impact of blunt‐nosed projectiles. The ballistic resistance of the layered targets decreased with increase in the number of layers for constant overall target thickness. Axi‐symmetric numerical simulations were performed with ABAQUS/Explicit to compare the numerical predictions with experiments. 3D numerical simulations were also performed for single plate of 1.0 mm thickness and two layered plate of 0.5 mm thickness impacted by blunt‐, ogive‐ and hemispherical‐nosed projectiles. Good agreement was found between the numerical simulations and experiments. 3D numerical simulations accurately predicted the failure mode of target plates.  相似文献   

6.
In this paper, the ballistic performance of monolithic, double- and three-layered steel plates impacted by projectiles of different strength is experimentally investigated by a gas gun. The ballistic limit velocity for each configuration target is obtained and compared based on the investigation of the effect of the number of layers and the strength of projectiles on the ballistic resistance. The results showed that monolithic plates had higher ballistic limit velocities than multi-layered plates for projectiles of low strength regardless their nose shape, and also the ballistic limit velocities of plates decreased with the increase of the number of layers. Moreover, monolithic plates showed greater ballistic limit velocities than multi-layered plates for ogival-nosed projectiles of high strength, and also the ballistic limit velocities of plates decreased with the increase of the number of layers. However, monolithic plates had lower ballistic limit velocities than multi-layered plates for blunt-nosed projectiles of high strength, and also the ballistic limit velocities of plates increased with the increase of the number of layers. The differences in the ballistic limit velocities between various impact conditions can be related to the transitions of perforation mechanisms and failure models of plates and projectiles.  相似文献   

7.
利用一级气炮发射半球形头弹冲击2 mm厚的编织复合材料层合板,冲击角度为0°、30°和45°,通过高速相机记录弹靶撞击过程并得到弹体速度数据。利用拟合公式处理试验数据,得到不同冲击角度时的弹道极限值,并和理论模型结果进行对比。分析了冲击角度对靶板弹道极限、能量吸收率和失效模式的影响。结果表明:45°斜冲击时的靶板弹道极限最高,正冲击次之,30°斜冲击最低。相同冲击能量时,45°斜冲击的能量吸收率最高,低能量(<80 J)冲击时,30°斜冲击比正冲击能量吸收率高,高能量(>80 J)时,正冲击更高。正冲击时,靶板正面因剪切失效而形成圆形凹坑,背面因纤维拉伸失效形成菱形鼓包,斜冲击形成椭圆形扩孔,且其面积随冲击角度增加而增加。  相似文献   

8.
Utilization of a ceramic front layer provides an improvement in the ballistic efficiency of monolithic metallic materials. In the current paper, the ballistic behavior of laminated composite having alumina front and dual phase steel backing layers was studied using 7.62 mm armor piercing (AP) projectiles under normal impact. The variables used were martensite content of the backing layer and the areal density of the composite. Experimental results showed that utilization of a 6 mm thick alumina front layer which was bonded to dual phase steel enhanced the ballistic resistance of the dual phase steel remarkably.  相似文献   

9.
The present experimental study is undertaken to investigate the effect of target configuration on ballistic performance when struck by standard bullets of different velocities. At first, single mild steel plates, 1–8 mm thick, are tested, and the effect of thickness and mechanical properties of plate material are explored. Secondly, in-contact laminae comprising an 8 mm-thick target, and spaced laminae of the same total steel thickness, with spacing distances equal to or multiples of the bullet core diameter (6 mm) are tested and the effect of number, thickness, and arrangement of laminae sought.In addition, fiberglass reinforced polyester (FRP) is used as a filler material for targets with spaced steel laminae. The influence of FRP's physical and mechanical properties on the ballistic performance of steel-FRP targets is investigated.In order to perform the ballistic tests, a special setup is constructed, which consists of a launcher, a target clamp and a velocity-measuring device. In each experiment, the change in the projectile velocity (while penetrating the target) divided by the length of penetration is established as a measure of target performance.Results show that single targets are more effective than laminated targets of the same total thickness, regardless of the configuration or striking velocity. It is noted, however, that the difference in performance diminishes as the striking velocity increases. Moreover, the effectiveness of laminated targets, in contact or spaced, increases as the number of laminae comprising each target decreases. Ballistic performance of laminated targets is further enhanced by using the thickest lamina as the back lamina. Results also emphasize the dependence of target performance on mechanical properties.Steel-FRP targets show better performance than weight-equivalent steel targets. Performance of a steel-FRP target is further improved by increasing fiber weight fraction in the FRP.  相似文献   

10.
In this paper, the ballistic resistance of double-layered steel shields against projectile impact at the sub-ordnance velocity is evaluated using finite element simulations. Four types of projectiles of different weight and nose shapes are considered, while armor shields consist of two layers of different materials. In a previous study of the same authors, it was shown that a double-layered shield of the same metal was able to improve the ballistic limit by 7.0–25.0% under impact by a flat-nose projectile, compared to a monolithic plate of the same weight. Under impact by a conical-nose projectile, a double-layered shield is almost as capable as a monolithic plate. The present paper extends the analysis to double-layered shields with various metallic material combinations. The study reveals that the best configuration is the upper layer of high ductility and low strength material and the lower layer of low ductility and high strength material. This configuration results in some 25% gain in the ballistic limit under moderate detrimental impact. This research helps clarify the long standing issue of the ballistic resistance of the multi-layered armor configuration.  相似文献   

11.
The main objective of the present work is to develop an adequate analytical model for penetration of multi-layered targets by rigid projectiles. The theoretical approach presented here generalizes the single-layer models described in [1] and [2]. As in [1] and [2] an analytical solution is developed for which the momentum equation is satisfied pointwise in the target region, while the boundary and continuity conditions are satisfied only approximately. Also, a single particular velocity field is assumed for all target layers. The predictions of the analytical solution are compared with numerical simulations obtained using the hydrocode Autodyn2D [3]. Attention is focused on two cases of a two-layered target: one consisting of materials which differ only by their hardnesses (yield strengths); and the other consisting of significantly different materials (RHA and Aluminum). The predictions of the analytical model are in reasonably good agreement with those of Autodyn2D for both cases, independently of whether the hard layer is first or second. It should also be mentioned that the computational time is reduced from several hours for Autodyn2D to only a few minutes for the analytical model.  相似文献   

12.
The investigation describes and analyses the ballistic impact behavior of a high strength armour steel and Al-7017 alloy under 7.62 mm deformable projectiles at a velocity of 830 ± 10 m/s at normal angle of attack. The high strength armour steel is subjected to two different heat treatments to see the effect of different mechanical properties on the ballistic behavior. The ballistic result of the Al-7017 alloy is compared with that of the steel. Some observations relating to the adiabatic shear bands formation have also been presented. Experimental results showed that among the investigated materials, the best ballistic performance was attained with the armour steel at 910 °C austenitisation followed by 200 °C tempering condition.  相似文献   

13.
This study focuses on the ballistic performances of 1 and 2 mm-thick and 2 × 1 mm-thick cold rolled sheet metal plates against 9 mm standard NATO projectile. The velocity of the projectile before and after perforation, the diameter of the front face deformation, the depth of the crater and the diameter of the hole were measured. The fracture surfaces of the plates near the ballistic limit were also microscopically analyzed. The highest ballistic limit was found in 2 mm-thick plate (332 m s−1) and the lowest in 1 mm-thick plate (97 m s−1). While, the ballistic limit of 2 × 1 mm-thick plate decreased to 306 m s−1. Typical failure mechanism of the projectile was the flattening and mushrooming at relatively low velocities and the separation from the jacket at relatively high velocities. In accord with the ballistic limits, 2 mm-thick target plate exhibited the highest hardness value. Microscopic investigations showed the significant reductions in the grain size of the targets after the test.  相似文献   

14.
现有的尖头弹侵彻金属靶板的弹道极限计算模型往往需要大量的试验数据和靶板材料的动态性能参数,且没有考虑侵彻速度对侵彻效果的影响,这给工程应用带来了很大的不便和误差。基于这一问题,考虑速度效应和靶板材料参数对侵彻的影响,结合流体动力学原理与动态空穴膨胀理论,分别提出了双模式和单模式侵彻模型。双模式侵彻模型的侵彻过程可分为两个阶段:流体动力变形阶段和塑性变形阶段,当侵彻速度小于靶材产生流体动力变形的临界速度时,侵彻进入塑性变形阶段,根据功能原理,建立了计算弹道极限的解析模型;单模式侵彻模型仅考虑塑性变形阶段。解析模型计算的弹道极限与弹道试验结果吻合的较好,且模型中不涉及弹道试验数据和靶板材料的动态性能参数,易于迅速求解,便于工程应用,可用于对延性金属靶板抗尖头弹侵彻能力的评估。  相似文献   

15.
This work presents both experimental and computational ballistic results of layered Aluminum Nitride (AlN) targets. An L/D = 6 tungsten penetrator is used to impact AlN targets at a nominal impact velocity of 2100m/s. The primary objective of this work is to determine the ballistic performance of layered ceramic targets to hypervelocity impact. Various layering configurations are investigated including separating the AlN ceramic layers by thin, low impedance, polymethyl methacrylate (PMMA). PMMA thicknesses of 1 mm, 0.5 mm and 0 mm are used. The number of AlN ceramic layers is also investigated. Target configurations of two, four, six, and twelve layers are considered. All targets consist of 76.2 mm of AlN. The experiments show that target resistance decreases when PMMA is added. Target resistance is also reduced when more layers are used. A secondary objective of this work is to evaluate the ballistic effect of reducing the lateral dimension of the ceramic tile (reduction in self-confinement). The experiments show reduced target resistance when the lateral tile size is decreased. Computations of selected experiments are presented to provide insight into the behavior of the AlN targets. The computations capture the effect of layering, PMMA separation and lateral tile size and provide insight into the behavior of the ceramic when used in these types of configurations.  相似文献   

16.
This paper discusses on the penetration of high velocity projectiles through aluminium–polyurea composite layered plate systems. An analytical model has been proposed to predict the residual velocity of aluminium–polyurea composite plates, and validated with both experimental and numerical investigations. Full metal jacket (FMJ) projectiles (5.56 mm × 45 mm), corresponding to NATO standard SS109, were fired at the aluminium–polyurea composite layered plate systems from a distance of 10.0 m at a fixed velocity of 945 m/s. Four different composite plate configurations were used with thicknesses varying from 16 to 34 mm. Each configuration consisted of six specimens. Residual velocities for each individual test were recorded. Numerical simulations of the penetration process have been performed using advanced finite element code LS-DYNA®. The well-established Johnson–Cook and Mooney–Rivlin material models were used to represent the stress–strain behaviour of aluminium and polyurea in the numerical analysis. The analytical and numerical models provided good approximations for the residual velocities measured during the experimental tests. Polyurea layers contributed positively towards the reduction of residual velocity of the projectile in composite plate systems. In addition, ballistic limit curves for different composite systems have been established based on the validated models. As the results showed that polyurea contributes positively towards the reduction of residual velocity of projectiles, the findings of this study can be effectively used for the similar applications in future armour industry.  相似文献   

17.
Ballistic perforations of monolithic steel sheets, two-layered sheets and lightweight sandwich panels were investigated both experimentally and numerically. The experiments were performed using a short cylindrical projectile with either a flat or hemispherical nose that struck the target plate at an angle of obliquity. A total of 170 tests were performed at angles of obliquity 0–45°. The results suggest that during perforation by a flat-nosed projectile, layered plates cause more energy loss than monolithic plates of the same material and total thickness. There was no significant difference in the measured ballistic limit speed between monolithic plates and layered plates during oblique impact perforation by a hemispherical-nosed projectile.  相似文献   

18.
Ballistic response of single or multi-layered metal armor systems subjected to high velocity impact loads was investigated in many experimental, theoretical and numerical studies. In this study, influences of plasma spray surface coating on high velocity impact resistance of AA 6061 T651 aluminum plates were analyzed experimentally. Two different types of surface coating were applied to plates using plasma spray. Using 9.00 mm Parabellum bullets, ballistic performance of both uncoated and coated plates was tested. After the impact tests, penetration depth including plate bending on the front face and bulging on the rear face of the target plate was measured. The improvement on the ballistic resistance of the coated plates was clearly observed. The increase in non-perforating projectile velocity and the decrease in penetration depth were both experienced.  相似文献   

19.
Thin plates of high-strength steel are frequently being used both in civil and military ballistic protection systems. The choice of alloy is then a function of application, ballistic performance, weight and price. In this study the perforation resistance of five different high-strength steels has been determined and compared against each other. The considered alloys are Weldox 500E, Weldox 700E, Hardox 400, Domex Protect 500 and Armox 560T. The yield stress for Armox 560T is about three times the yield stress for Weldox 500E, while the opposite yields for the ductility. To certify the perforation resistance of the various targets, two different ballistic protection classes according to the European norm EN1063 have been considered. These are BR6 (7.62 mm Ball ammunition) and BR7 (7.62 mm AP ammunition), where the impact velocity of the bullet is about 830 m/s in both. Perforation tests have been carried out using adjusted ammunition to determine the ballistic limit of the various steels. In the tests, a target thickness of 6 mm and 6 + 6 = 12 mm was used for protection class BR6 and BR7, respectively. A material test programme was conducted for all steels to calibrate a modified Johnson–Cook constitutive relation and the Cockcroft–Latham fracture criterion, while material data for the bullets mainly were taken from the literature. Finally, results from 2D non-linear FE simulations with detailed models of the bullets are presented and the different findings are compared against each other. As will be shown, good agreement between the FE simulations and experimental data for the AP bullets is in general obtained, while it was difficult to get reliable FE results using the Lagrangian formulation of LS-DYNA for the soft core Ball bullet.  相似文献   

20.
利用一级气炮发射卵形头弹撞击2 mm厚度的编织复合材料层合板,撞击角度分别为0°、30°和45°,通过高速相机记录弹靶撞击过程,并获得弹体速度数据。基于拟合公式处理试验数据,计算获取弹道极限,分析撞击角度对弹道极限、靶板能量吸收率及其失效模式的影响规律及机制。结果表明:弹体撞击角度为45°时,靶板弹道极限最高,其次为0°,撞击角度为30°时最小。随着冲击角度增加,层合板损伤形状从菱形逐渐转变为椭球形,损伤面积随冲击速度增加而增大,且45°冲击时层合板损伤面积最大,0°和30°冲击时损伤面积近似相等。弹体初始撞击角度对靶体失效模式存在影响,弹体撞击角度为0°时,纤维断口主要是剪切应力导致的横截面。撞击角度为30°时,纤维断口主要是剪切应力和拉伸应力导致的斜截面。45°斜撞击时,纤维断口主要是拉伸应力导致的横截面。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号