首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We reported the effects of Mn doping on the structure and dielectric properties of (Ba0.835Ca0.165)(Zr0.09Ti0.91)O3 (BCZT) thin films prepared by sol-gel method. The (Ba0.835Ca0.165)Mnx(Zr0.09Ti0.91)1 − xO3 (x = 0, 0.002, 0.005, and 0.01) thin films exhibited a pure pseudo-cubic perovskite structure with random orientation. Scanning electron microscopy and atomic force microscopy observation showed that increasing Mn-doping amount caused a decrease in particle size and a cluster of the particles, while the film surface remained smooth and crack-free. Compared with the undoped film, Mn doped BCZT thin films exhibited smaller dielectric constant and lower dielectric loss. The figure of merit reached the maximum value of 16.7 with a tunability of 53.6% for the film with 0.5 mol % Mn doping, when a bias electric field of 400 kV/cm was applied at 100 kHz. The results indicated that the Mn doped BCZT thin films are suitable for tunable microwave device applications.  相似文献   

2.
La(Mg0.5Ti0.5)O3 ceramics were prepared by a non-conventional chemical route, which was based on the Pechini method. For the synthesis of La(Mg0.5Ti0.5)O3 powders, special attention was paid to calcination and milling conditions. Powder morphology and composition were evaluated. Fine La(Mg0.5Ti0.5)O3 powders were obtained at lower temperatures than by conventional methods. Sintering under different conditions was also tested. Dense La(Mg0.5Ti0.5)O3 ceramics were obtained at lower temperatures showing a single phase composition and a homogeneous microstructure. Preliminary dielectric characterization at microwave frequencies was also performed.  相似文献   

3.
10 mol% Pb(Fe1/2Nb1/2)O3 (PFN) modified Pb(Mg1/3Nb2/3)O3-PbZr0.52Ti0.48O3 (PMN-PZT) relaxor ferroelectric ceramics with compositions of (0.9 − x)PMN-0.1PFN-xPZT (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9) were prepared. X-ray diffraction investigations indicated that as-prepared ceramics were of pure perovskite phase and the sample with composition of x = 0.8 was close to morphotropic phase boundary (MPB) between rhombohedral and tetragonal phase. Dielectric properties of the as-prepared ceramics were measured, and the Curie temperature (Tc) increased sharply with increasing PZT content and could be higher than 300 °C around morphotropic phase boundary (MPB) area. At 1 kHz, the sample with composition of x = 0.1 had the largest room temperature dielectric constant ?r = 3519 and maximum dielectric constant ?m = 20,475 at Tm, while the sample with composition of x = 0.3 possessed the maximum dielectric relaxor factor of γ = 1.94. The largest d33 = 318 pC/N could be obtained from as-prepared ceramics at x = 0.9. The maximum remnant polarization (Pr = 28.3 μC/cm2) was obtained from as-prepared ceramics at x = 0.4.  相似文献   

4.
5.
It has been found that the sintering temperature of piezoelectric Pb(Zr0.52Ti0.48)O3 (PZT) can be reduced by phosphorus addition without compromising the dielectric properties. A sintered density of 98.6% of the theoretical density was obtained for 2 wt.% P2O5 addition after sintering at 1050 °C for 4 h. The P2O5 addition, either above or below 2 wt.%, showed an inferior densification. Coincidentally, the P2O5 addition gave rise to a lower lead loss, and the dielectric constant showed a peak at 1 wt.% P2O5 addition.  相似文献   

6.
We have carried out photoacoustic experiments to study the layered electroceramics Bi4−xRxTi3O12 (Rx=Pr, Nd, Gd, Dy), with x=0.8. Results are shown in terms of successive analyses performed on functions, PA(tTi), which result from the interaction of the laser beam with the crystalline lattice. Previous permittivity experiments performed in the materials suggested anomalous ferroelectric behavior. Using a pulsed Nd:YAG laser (10 Hz, 5 ns pulse width), photoacoustic experiments were run from room temperature up to 800 °C. Perturbations in the resultant correlation curves can be interpreted as the existence of a wide set of different transition temperatures in the material, such as are believed to occur in relaxors. From these experiments, we conclude that the temperature dependence of non-classical ferroelectrics can be more closely monitored.  相似文献   

7.
Porous Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics with different pore size were prepared by solid-state sintering in air. The microstructural effect on the properties has been systematically investigated by SEM, ferroelectric hysteresis, strain-electric field curves and breakdown strength measurements. The results demonstrate that the microgeometry has a subtle effect on the ferroelectric and dielectric properties. However, the results also demonstrate that the electric field induced strain and the dielectric breakdown strength decreases with the increase of pore size.  相似文献   

8.
The La1−xBix(Mg0.5Sn0.5)O3 ceramics were prepared by the conventional solid-state method with various sintering temperatures. The X-ray diffraction patterns of the La0.97Bi0.03(Mg0.5Sn0.5)O3 ceramics revealed no significant variation of phase with sintering temperatures. An apparent density of 6.50 g cm−3, a dielectric constant (?r) of 20.2, a quality factor (Q × f) of 58,100 GHz and a temperature coefficient of resonant frequency (τf) of −84.2 ppm °C−1 were obtained for La0.97Bi0.03(Mg0.5Sn0.5)O3 ceramics that were sintered at 1550 °C for 4 h.  相似文献   

9.
Lanthanum modified lead zirconate titanate ceramics with lanthanum content changing from 7.6 to 9.0 at.% La and a Zr/Ti ratio of 70/30 (PLZT 100x/70/30) have been prepared by conventional high temperature solid-state reaction technique. The studies of the ferroelectric, electromechanical and dielectric properties of the ceramics were carried out. The results showed the enhanced antiferroelectricity stability when the lanthanum content increases. The polarization and strain decreased with the increasing La content. The dielectric spectra of all the PLZT samples show a dispersive behavior. With increasing La concentration, the maximum dielectric constants εm and the transition temperatures Tm were reduced.  相似文献   

10.
The microwave dielectric properties and the microstructures of Nd(Co1/2Ti1/2)O3 ceramics prepared by conventional solid-state route have been studied. The prepared Nd(Co1/2Ti1/2)O3 exhibited a mixture of Co and Ti showing 1:1 order in the B-site. It is found that low-level doping of B2O3 (up to 0.75 wt.%) can significantly improve the density and dielectric properties of Nd(Co1/2Ti1/2)O3 ceramics. Nd(Co1/2Ti1/2)O3 ceramics with additives could be sintered to a theoretical density higher than 98.5% at 1320 °C. Second phases were not observed at the level of 0.25-0.75 wt.% B2O3 addition. The temperature coefficient of resonant frequency (τf) was not significantly affected, while the dielectric constants (?r) and the unloaded quality factors Q were effectively promoted by B2O3 addition. At 1320 °C/4 h, Nd(Co1/2Ti1/2)O3 ceramics with 0.75 wt.% B2O3 addition possesses a dielectric constant (?r) of 27.2, a Q × f value of 153,000 GHz (at 9 GHz) and a temperature coefficient of resonant frequency (τf) of 0 ppm/°C. The B2O3-doped Nd(Co1/2Ti1/2)O3 ceramics can find applications in microwave devices requiring low sintering temperature.  相似文献   

11.
Ceramic powders of (Ba,Pb)Pb(Mg1/3Ta2/3)O3 were prepared via a B-site precursor route. Crystal symmetries and lattice parameters were determined. Monophasic perovskite was developed after the two-step reaction process, in which the lattice parameters showed linear changes in the entire composition range. Dielectric responses of the ceramics with compositional and frequency changes were investigated. The results were also compared with the (Ba,Pb)(Zn1/3Ta2/3)O3 data.  相似文献   

12.
Porous Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics with a pore size of the order of the crystalline grain size were prepared and the microstructure and the properties were investigated. Based on this microstructure, the net porosity of the ceramics can be attributed to the intentionally introduced extrinsic porosity and thus the quantitative dependence of ferroelectric and dielectric properties of the ceramics on the porosity can be established respectively. A good agreement with experimental measurements was obtained. Our work represents the first attempt to tailor the properties of ferroelectric ceramics via varying the porosity from the viewpoint of application.  相似文献   

13.
Relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (65/35) and 10% PbZrO3-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (65/35) ceramics were both prepared by a modified precursor method, which was based on the high-temperature synthesis of an oxide precursor that contained all the B-site cations for the consideration of B-site homogeneity. The dielectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 (65/35) ceramic was more of normal ferroelectric behavior, but the high dielectric constant (?m = 34,200 at 1 kHz) and piezoelectric constant (d33 = 709 pC/N) were observed for this composition close to the morphotropic phase boundary. Comparatively, introduction of 10% PbZrO3 into Pb(Mg1/3Nb2/3)O3-PbTiO3 (65/35) ceramics enhanced the diffuse phase transition as well as the rhombohedral to tetragonal phase transition temperature, while it also kept the high dielectric constant (?m = 29,600 at 1 kHz) and piezoelectric constant (d33 = 511 pC/N).  相似文献   

14.
Phase formation, microstructure and microwave dielectric properties of (1 − y)Li3NbO4 + yLi2TiO3(Li2SnO3) ceramics have been studied in this paper. The structure and microstructure of the compounds were investigated using X-ray powder diffractometer (XRD), scanning electron microscope (SEM), Raman spectrometer. The microwave dielectric properties of the ceramics were studied with a network analyzer at the frequency of about 8–12 GHz. Li3NbO4 formed ordered solid solutions with the addition of small amount of Li2TiO3 (y ≤ 0.2), whereas no solid solution formed with the addition of small amount of Li2SnO3. Small amount of Li2TiO3 doping suppressed the appearance of impurity phases caused by lithium evaporation for Li3NbO4. The Li2TiO3 doped compositions with 0.02 ≤ y ≤ 0.08 demonstrated homogeneous and dense microstructure after sintering at 1150 °C/2 h, in contrast the 0.2 ≤ y ≤ 0.6 specimens exhibited porous and subgrains microstructure after sintering at 1250 °C/2 h. Short range ordering was observed in the 0.2 ≤ y ≤ 0.6 compositions. Mechanical mixture phases of Li3NbO4 and Li2SnO3 based solid solution (Li2SnO3 (ss)) existed in the Li2SnO3 added specimens. The dielectric permittivity increased with increasing Li2TiO3 addition, but decreased with the increase of Li2SnO3 content. All specimens exhibited negative τf value for the Li2TiO3 added specimens, although its absolute τf value decreased with the increase of Li2TiO3 addition. Whereas, the τf value changed from negative into positive with the increase of Li2SnO3 addition. Optimized combined microwave dielectric properties (?r = 19.8, Q × f = 91,200 GHz, τf = −24 ppm/°C and ?r = 16, Q × f = 75,300 GHz, τf = 3 ppm/°C) could be obtained for the Li2TiO3 added (y = 0.6) and Li2SnO3 added specimens(y = 0.7), respectively. The microwave dielectric properties of the Li2SnO3 end member are ?r = 13.5, Q × f = 61,600 GHz, τf = 29 ppm/°C.  相似文献   

15.
Phase composition, microstructure and tunable dielectric properties of (1 − x)BaZr0.25Ti0.75O3-xMgO (BZTM) composite ceramics fabricated by solid-state reaction were investigated. It was found Mg not only existed in the matrix as MgO, there was also trace amount of Mg2+ ions dissolved in the BZT grains, which led to Curie temperature of the BZTM composites ceramics shifting to below −100 °C. Dielectric permittivity of the BZTM composite ceramics was reduced from thousands to hundreds by manipulating the content of MgO. Johnson's phenomenological equation based on Devonshire's theory was used to describe the nonlinear dielectric permittivity of the ceramics with increasing applied DC field. With increasing content of MgO, anharmonic constant α(T) increased monotonously. Dielectric permittivity was 672, while dielectric tunability was as high as 30.0% at 30 kV/cm and dielectric loss was around 0.0016 for the 0.6BaZr0.25Ti0.75O3-0.4MgO sample at 10 kHz and room temperature.  相似文献   

16.
(1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 (0.1 ≤ x ≤ 0.85) composites are prepared by mixing 1150 °C-calcined BaTi4O9 with 1150 °C-calcined Ba(Zn1/3Ta2/3)O3 powders. The crystal structure, microwave dielectric properties and sinterabilites of the (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics have been investigated. X-ray diffraction patterns reveal that BaTi4O9, ordered and disordered Ba(Zn1/3Ta2/3)O3 phases exist independently over the whole compositional range. The sintering temperatures of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics are about 1240 - 1320 °C and obviously lower than those of Ba(Zn1/3Ta2/3)O3 ceramics. The dielectric constants (?r) and the temperature coefficient of resonant frequency (τf) of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics increase with the increase of BaTi4O9 content. Nevertheless, the bulk densities and the quality values (Q × f) of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics increase with the increase of Ba(Zn1/3Ta2/3)O3 content. The results are attributed to the higher density and quality value of Ba(Zn1/3Ta2/3)O3 ceramics, the better grain growth, and the densification of sintered specimens added a small BaTi4O9 content. The (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramic with x = 0.1 sintered at 1320 °C exhibits a ?r value of 31.5, a maximum Q × f value of 68500 GHz and a minimum τf value of 4.1 ppm/°C.  相似文献   

17.
We prepared Ba(Ti1−xSnx)O3 powders and ceramics by means of the sol-gel process, with dibutyltin dilaurate as the Sn precursor. The samples were characterized by means of Fourier-transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and scanning electron microscopy, and also determined the dielectric properties of the ceramics. The powders synthesized by means of the sol-gel process had a grain size on the nanometer scale, with the grains mainly composed of a cubic BaTiO3 phase. Sn can disperse into BaTiO3 more uniformly in the sol-gel technique using dibutyltin dilaurate as the Sn precursor. With increasing Sn concentration, the grain size of the Ba(Ti1-xSnx)O3 ceramics increased and the maximum dielectric constant (?max) first increased and then decreased. At a Sn concentration of 5 mol%, ?max reached its maximum value (19,235).  相似文献   

18.
We have grown and characterized BaZr0.2Ti0.8O3 (BZT) epitaxial thin films deposited on (001) and (111)-oriented SrRuO3-buffered SrTiO3 substrates by pulsed laser deposition. Structural and morphological characterizations were performed using X-ray diffractometry and atomic force microscopy, respectively. A cube-on-cube epitaxial relationship was ascertained from the θ-2θ and φ diffractograms in both (001) and (111)-oriented films. The (001)-oriented films showed a smooth granular morphology, whereas the faceted pyramid-like crystallites of the (111)-oriented films led to a rough surface. The dielectric response of BZT at room temperature was measured along the growth direction. The films were found to be ferroelectric, although a well-saturated hysteresis loop was obtained only for the (001)-oriented films. High leakage currents were observed for the (111) orientation, likely associated to charge transport along the boundaries of its crystallites. The remanent polarization, coercive field, dielectric constant, and relative change of dielectric permittivity (tunability) of (111)-oriented BZT were higher than those of (001)-oriented BZT.  相似文献   

19.
We report high dielectric tunabilities of (1 − x)Ba(Zr0.2Ti0.8)O3 − x(Ba0.7Ca0.3)TiO3 (BZT-xBCT) (x = 0.15, 0.30, 0.40, 0.45, 0.50, and 0.55) thin films prepared by a sol-gel method. The films show a pure perovskite structure with random orientation. They have moderate dielectric constant ranging from 350 to 500 and low dielectric loss near 3.0% at 1 kHz with 0 V bias at room temperature. The dielectric tunability of the BZT-0.55BCT thin films is up to 65% at 400 kV/cm and 100 kHz. The films exhibit a high optical transmission in the range of 420 nm-1500 nm. Their optical band gap energies are about 3.90 eV.  相似文献   

20.
To observe the dielectric relaxor behavior and the ferroelectric aging effect, the structural and electrical properties of (Ba0.90Ca0.10)(Ti1−xCax)O3−x (BCT-C) ceramics prepared using a conventional dry route were investigated. With increased concentration of Ca on the B-site in BCT-C ceramics, the tetragonal phase is decreased while the multiphases with the cubic pervoskite structure as a major constituent is increased and remained predominant in the BCT-C ceramics with x > 0.03. The increased amount of Ca on the B-site causes the high temperature phase transition to shift to the low temperature and results in an increase in the degree of diffusion and relaxation of the BCT-C ceramics. The observed dielectric relaxation behavior may be understood by a defect-dipole formed random electric field induced domain state. The aging effect controlled by the migration of mobile oxygen vacancies is rarely observed in aged BCT-C ceramics while it can be markedly observed in Bi-doped BCT ceramics. Based on the microscopic mechanism of the aging effect, the possible reasons for the aging effect are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号