首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this contribution, different amounts of nickel were incorporated into the mesopores of MCM-41 via an in situ approach. A hydrophobic nickel precursor was incorporated into the nanochannels of mesoporous silica by manipulation of solvent-solute interaction. The synthesized material was characterized using X-ray diffraction, nitrogen physisorption, temperature programmed reduction, and transmission electron microscopy. The results implicate the formation of MCM-41 with well-ordered hexagonal structure and establish also the presence of nickel nanoparticles inside the nanochannels of mesoporous silica. Adsorptive desulfurization of gas oil was conducted using the nickel-incorporated MCM-41 samples. The effects of nickel concentration, temperature of process and feed flow rate on the desulfurization process were examined. The MCM-41 containing 6 wt.% of nickel had both the highest breakthrough sulfur adsorption capacity and total sulfur adsorption capacity, which were 0.69 and 1.67 mg sulfur/g adsorbent, respectively. The breakthrough sulfur adsorption capacity was almost regained after reductive regeneration of spent adsorbent. The obtained results suggest that the method applied for the synthesis of Niy/MCM resulted in formation of well-dispersed, accessible and small nickel nanoparticles incorporated into the pores of MCM-41 which might be an advantage for adsorption of refractory sulfur compounds from low sulfur gas oil.  相似文献   

2.
Pd nanoparticles supported in functionalized mesoporous silica were prepared. Mesoporous silica support was modified with [3-(2-aminoethyl aminopropyl)] trimethoxysilane. Palladium ions were grafted onto the functionalized mesoporous silica and reduced with hydrazine hydrate to obtain the Pd nanoparticles supported on functionalized mesoporous silica. The Pd loading in the nanocomposite of Pd supported on the functionalized mesoporous silica is 4.30 wt%. CO chemisorption analysis on the nanocomposite shows a Pd dispersion as high as 35% and a Pd surface area of 156 m2/g. The surface area, pore size, and pore volume decrease slightly with the incorporation of the Pd nanoparticles into the functionalized mesoporous silica. Pd supported on the functionalized mesoporous silica with controlled molar ratio of amino groups to palladium exhibits an excellent catalytic activity and low Pd leaching for the Heck carbon-carbon coupling reaction. The catalyst can be reused for at least six recycles in air with only a minor loss of activity.  相似文献   

3.
This paper examines the preparation of novel magnetic zeolitic nanocomposites from the occlusion of silica-coated iron species by crystalline titanosilicate-1. The results revealed that well-crystallized TS-1 could be synthesized in the presence of silica-hematite nanoparticles. Each as-made nanocomposite particle exhibited a compact and monolithic ‘brick-like’ morphology with a size of ca. 400 nm × 200 nm × 200 nm. The non-magnetic hematite (iron oxide) in such an as-made nanocomposite can be reduced by hydrogen to produce ferrimagnetic iron oxides and ferromagnetic elemental iron. The resultant nanocomposite consists of TS-1 as outer shell, which occludes a small portion of silica-iron species as the core with a total magnetization value of 3.7 emu/g. The silica coating and size of hematite nanoparticles, the presence of ammonium carbonate as the crystallization-mediating agent for nucleation and growth of TS-1 are critical factors when preparing such nanocomposites.  相似文献   

4.
Investigation on the mechanism of the photoluminescence of MCM-41   总被引:1,自引:0,他引:1  
Pure siliceous MCM-41 sample was synthesized in ethylenediamine (EDA) medium. MCM-41 sample calcined at 813 K showed the most strong photoluminescent (PL) effect, while those calcined at 1073 K and 1323 K only showed weak photoluminescence. The intensity of photoluminescence decreased as the calcined temperature increased. By nuclear magnetic resonance (NMR) spectroscopy and infrared (IR) investigation, it was demonstrated that both the Al-depleted defect sites and silanol contents were responsible for the strong PL effect of the investigated MCM-41 samples. It was also suggested that the mesoporous channel structure of MCM-41 influences the investigated PL effect.  相似文献   

5.
Polypropylene(PP)/Polystyrene(PS) (PP/PS = 80/20) blend with different types of fillers were prepared by using melt method. Four different types of fillers, namely mesoporous MCM-41 (without template), nano-SiO2, Polymethylmethacrylate (PMMA)/MCM-41 and PMMA/SiO2 were considered. For PMMA/MCM-41 filler, the synthesis of the filler consisting of entrapped strand of PMMA within the pores of mesoporous MCM-41 (without template) was described. The mechanical properties of the blend determined as the nano-fillers contents and the different types of blend were found to vary with the different interface between fillers and the matrix. SEM revealed a good interaction between the matrix phases and PMMA/MCM-41 or MCM-41 (without template). The decreased Tg of PS implied that the good adhesion between PP and PS blend was obtained by adding PMMA/MCM-41 nano-filler.  相似文献   

6.
A facile sonochemical approach was applied for the large scale synthesis of iron oxide magnetic nanoparticles (NPs) using inexpensive and non-toxic metal salts as reactants. The as-prepared magnetic iron oxide NPs has been characterized by XRD, TEM, EDS, and VSM. X-ray diffraction (XRD) and EDS analysis revealed that Fe3O4 NPs have been successfully synthesized in a single reaction by this simple method. Transmission electron microscopy (TEM) data demonstrated that the particles were narrow range in size distribution with 11 nm average particle size. Moreover, TEM measurements also show that the synthesized nanoparticles are almost spherical in shape. The magnetization curve from vibrating sample magnetometer (VSM) measurement shows that as-synthesized NPs were nearly superparamagnetic in magnetic properties with very low coercivity, and magnetization values were 80 emu/g, which is very near to the bulk value of iron oxide. The estimated value of mass susceptibility of as-synthesized nanoparticles is Xg = 5.71 × 10− 4 m3/kg.  相似文献   

7.
有序介孔氧化硅孔道氧化锰团簇组装研究   总被引:1,自引:1,他引:0  
田高  吴超  陈文  周静  陈龙 《功能材料》2005,36(7):1080-1082
以有序介孔氧化硅MCM-41为主体材料,通过浸渍法及后续热处理工艺,在孔道中组装氧化锰的团簇粒子,并对其进行结构表征。通过XRD、HR—TEM、XPS及N2吸附表明氧化锰的团簇粒子已经成功组装到MCM-41有序孔道中。通过对不同孔径有序介孔材料的氧化锰团簇粒子的组装,表明随着孔道中组装量的增加,350nm附近光致发光强度增强,吸收边发生红移,同时1000nm附近吸收带宽化。  相似文献   

8.
Tumblerlike magnetic/fluorescein isothiocyanate (FITC)-labeled mesoporous silica nanoparticles, Mag-Dye@MSNs, have been developed, which are composed of silica-coated core-shell superparamagnetic iron oxide (SPIO@SiO(2)) nanoparticles co-condensed with FITC-incorporated mesoporous silica. Mag-Dye@MSNs can label human mesenchymal stem cells (hMSCs) through endocytosis efficiently for magnetic resonance imaging (MRI) in vitro and in vivo, as manifested by using a clinical 1.5-T MRI system with requirements of simultaneous low incubation dosage of iron, low detection cell numbers, and short incubation time. Labeled hMSCs are unaffected in their viability, proliferation, and differentiation capacities into adipocytes and osteocytes, which can still be readily detected by MRI. Moreover, a higher MRI signal intensity decrease is observed in Mag-Dye@MSN-treated cells than in SPIO@SiO(2)-treated cells. This is the first report that MCM-41-type MSNs are advantageous to cellular uptake, as manifested by a higher labeling efficiency of Mag-Dye@MSNs than SPIO@SiO(2).  相似文献   

9.
This study explored the possibility of recovering waste powder from photonic industry into two useful resources, sodium fluoride (NaF) and the silica precursor solution. An alkali fusion process was utilized to effectively separate silicate supernatant and the sediment. The obtained sediment contains purified NaF (>90%), which provides further reuse possibility since NaF is widely applied in chemical industry. The supernatant is a valuable silicate source for synthesizing mesoporous silica material such as MCM-41. The MCM-41 produced from the photonic waste powder (PWP), namely MCM-41(PWP), possessed high specific surface areas (1082 m2/g), narrow pore size distributions (2.95 nm) and large pore volumes (0.99 cm3/g). The amine-modified MCM-41(PWP) was further applied as an adsorbent for the capture of CO2 greenhouse gas. Breakthrough experiments demonstrated that the tetraethylenepentamine (TEPA) functionalized MCM-41(PWP) exhibited an adsorption capacity (82 mg CO2/g adsorbent) of only slightly less than that of the TEPA/MCM-41 manufactured from pure chemical (97 mg CO2/g adsorbent), and its capacity is higher than that of TEPA/ZSM-5 zeolite (43 mg CO2/g adsorbent). The results revealed both the high potential of resource recovery from the photonic solid waste and the cost-effective application of waste-derived mesoporous adsorbent for environmental protection.  相似文献   

10.
When using the bottom‐up approach with anisotropic building‐blocks, an important goal is to find simple methods to elaborate nanocomposite materials with a truly macroscopic anisotropy. Here, micrometer size colloidal mesoporous particles with a highly anisotropic rod‐like shape (aspect ratio ≈ 10) have been fabricated from silica (SiO2) and iron oxide (Fe2O3). When dispersed in a solvent, these particles can be easily oriented using a magnetic field (≈200 mT). A macroscopic orientation of the particles is achieved, with their long axis parallel to the field, due to the shape anisotropy of the magnetic component of the particles. The iron oxide nanocrystals are confined inside the porosity and they form columns in the nanochannels. Two different polymorphs of Fe2O3 iron oxide have been stabilized, the superparamagnetic γ‐phase and the rarest multiferroic ε‐phase. The phase transformation between these two polymorphs occurs around 900 °C. Because growth occurs under confinement, a preferred crystallographic orientation of iron oxide is obtained, and structural relationships between the two polymorphs are revealed. These findings open completely new possibilities for the design of macroscopically oriented mesoporous nanocomposites, using such strongly anisotropic Fe2O3/silica particles. Moreover, in the case of the ε‐phase, nanocomposites with original anisotropic magnetic properties are in view.  相似文献   

11.
A method with modifying tetraethyl orthosilicate (TEOS) with nickel species has been developed for the synthesis of mesoporous silica with high nickel content (11.8 wt.% of Ni or even higher). With the method, MCM-41-type materials were obtained with high BET surface area reaching 868 m2/g and pore volume up to 0.73 cm3/g. The materials were characterized by means of X-ray powder diffraction, transmission electron microscopy, energy dispersive X-ray spectroscopy, N2 adsorption, Fourier transform infrared and X-ray photoelectron spectroscopy. Nickel species were incorporated into the silica frameworks. The mesostructures still remain after activation using H2 at 773 K.  相似文献   

12.
Pd-doped tin oxide nanoparticles dispersed in mesoporous silica were prepared by a thermal-decomposing method and characterized by isothermal nitrogen adsorption measurement, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Tin oxide nanoparticles grow up slowly owing to confinement of the pores of the mesoporous silica. Due to the unique microstructure of the mesoporous silica, the obtained nanocomposite consists of a three-dimensional web of interconnected crystallites of tin oxide and exhibits electronic conductivity when enough tin oxide is assembled in the silica pores. The obtained nanocomposite has also a large specific surface area, and the tin oxide nanoparticles have a free surface in contact with the ambient air. Therefore, the samples exhibit a high sensitivity to CO gas, and have potential application.  相似文献   

13.
The mesoporous silica material MCM-41 was prepared by the sol-gel method and characterized using X-ray diffraction (XRD), N2 adsorption-desorption and thermogravimetric analysis. The material was tested for extraction of trichlorfon, pyrimethanil, tetraconazole, thiabendazole, imazalil and tebuconazole from mango fruit, with analysis using gas chromatography-mass spectrometry (GC/MS). In experiments carried out in triplicate, at a 1.0 mg/kg concentration level, recoveries using the MCM-41 sorbent were in the range 73-103%. Comparison of MCM-41 with commercially available silica gel showed that MCM-41 was a similar extracting phase for the pesticides investigated with a significant cost advantage over this conventional material.  相似文献   

14.
Superparamagnetic magnetite nanoparticles were obtained starting from a mixture of iron(II) and iron(III) solutions in a preset total iron concentration from 0.04 to 0.8 mol l−1 with ammonia at 25 and 70 °C. The regeneration of cellulose from viscose produces micrometrical spherical cellulose beads in which synthetic magnetite were embedded. The characterization of cellulose-magnetite beads by X-ray diffraction, Scanning and Transmission Electron Microscopy and magnetic measurement is reported. X-ray diffraction patterns indicate that the higher is the total iron concentration and temperature the higher is the crystal size of the magnetite obtained. Transmission Electron Microscopy studies of cellulose-magnetite beads revealed the distribution of magnetite nanoparticles inside pores of hundred nanometers. Magnetite as well as the cellulose-magnetite composites exhibit superparamagnetic characteristics. Field cooling and zero field cooling magnetic susceptibility measurements confirm the superparamagnetic behaviour and the blocking temperature for the magnetite with a mean size of 12.5 nm, which is 200 K.  相似文献   

15.
3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by a rapid sonochemical co-condensation synthesis procedure. The chemical nature of surface organic modifier on the obtained modified silica nanoparticle was characterized by 13C and 29Si MAS Nuclear Magnetic Resonance (NMR) spectroscopies, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)- differential scanning calorimetry (DSC). Due to the strengthened positive surface charge of the silica nanoparticles by the modification with aminopropyl groups, the capability for bovine serum albumin (BSA) adsorption was significantly increased as compared with bare silica nanoparticles. 80 mg/g BSA was adsorbed on modified silica nanoparticles, whereas only 20 mg/g BSA could be loaded on pure silica nanoparticles. The enhanced positive surface charge repelled proteins with net positive charge and the modified silica nanoparticles exhibited negligible adsorption of lysozyme, thus a selective adsorption of proteins could be achieved.  相似文献   

16.
In this work, new polyacrolein/MCM-41 nanocomposites with good phase mixing behavior were prepared through an emulsion polymerization technique. Mesoporous silica was synthesized by in situ assembly of tetraethyl orthosilicate (TEOS) and cetyl trimethyl ammonium bromide (CTAB). The structure and properties of polyacrolein containing nanosized MCM-41 particle (5 and 10 wt%), were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, Dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption techniques, and thermogravimetric (TGA) analyses. The SEM images from the final powder have revealed good dispersion of the MCM-41 nanoparticles throughout polymeric matrix with no distinct voids between two phases. The results indicated that the thermal properties of the nanocomposite were enhanced by addition of MCM-41. Thermomyces lanuginosa lipase (TLL) was used as a model biocatalyst and successfully immobilized with polyacrolein and the nanocomposite via covalent bonds with the aldehyde groups. The activity between free enzyme, polyacrolein, and MCM-41 nanocomposite (10 wt%)-immobilized TLL was compared. The immobilized lipase with the nanocomposite shows better operational stability such as pH tolerance, thermal and storage stability. In addition, the immobilized lipase with the nanocomposite can be easily recovered and retained at 74% of its initial activity after 15 time reuses.  相似文献   

17.
Mesoporous NiO–SiO2 (MCM-41) silica-matrix composites with various nickel oxide concentrations (NiO : SiO2 = 0.025 : 1 to 0.2 : 1) have been produced by oxide cocondensation under hydrothermal synthesis conditions in the presence of cetyltrimethylammonium bromide as a template and (2-cyanoethyl) triethoxysilane as an organosubstituted trialkoxysilane additive. X-ray diffraction data have been used to evaluate the maximum nickel(II) oxide concentration (NiO : SiO2 = 0.1 : 1) that allows the ordered mesopore structure of MCM-41 to persist in the silica-matrix composites. We have studied the magnetic properties of this material as functions of temperature and magnetic field. The results demonstrate that the magnetic properties of the nanocomposite with NiO : SiO2 = 0.1 : 1 at low temperatures (T < 20 K) are determined by incomplete spin compensation in the matrix and on the surface of the NiO nanoparticles.  相似文献   

18.
We report on the synthesis, morphology and magnetic properties of a novel NiO/SiO2 nanostructure. The NiO/SiO2 nanostructure was synthesized by a method based on the contribution of sol-gel and combustion processes. X-ray powder diffraction (XRPD) showed the formation of the nanocrystalline NiO phase. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) revealed perfectly spherical NiO nanoparticles with diameter of about 5 nm. Amorphous silica shell around the NiO nanoparticles was also observed by HRTEM showing NiO/SiO2 core-shell nanostructure. Magnetic measurements show hysteretic behavior at 2 K with coercivity HC = 700 Oe, remanent magnetization Mr = 3.9 emu/g, saturation magnetization MS = 28.2 emu/g and huge magnetic moment mp ≈ 1300 μB of the nanoparticles.  相似文献   

19.
MCM-41 and Al–MCM-41 has been synthesized using cetyl-trimethylammonium bromide (CTAB) surfactant as template and adding the silica precursor to aqueous solutions containing CTAB. The obtained solids were calcined at 600 °C for 4 h. HPW heteropolyacid supported on the mesoporous were prepared using the incipient wetness method. The characterization of materials was performed by X-ray diffraction, Transmission Electron Microscopy, N2 adsorption, 29Si Cross Polarization–Magic Angle Spinning and 27Al MAS NMR. Results showed that the hexagonal structure is obtained in both cases. The Aluminium species are located inside an extra-framework. The impregnation reduces the surface area of the mesoporous materials especially of the Al–MCM-41 suggesting a participation of aluminium during the impregnation. HPW is well dispersed in the mesoporous materials and is located inside the pores interacting with the silanol group of the pores wall. 27Al MAS NMR measurements have showed that the impregnation causes the removal of the non-framework aluminium.  相似文献   

20.
A simple and green method of depositing monometallic (Ru, Rh, Pd) and bimetallic nanoparticles (Ru-Rh, Ru-Pd and Rh-Pd) on an ordered mesoporous silica support (MCM-41) in supercritical carbon dioxide (scCO2) is described. Metal acetylacetonates were used in the experiments as CO2-soluble metal precursors. Suitable temperature and pressure conditions for synthesizing each kind of nanoparticles were applied in this study. The characterizations of these nanocomposites were performed by transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS). The nanoparticles had average sizes varying from 2 nm to 8 nm. The Ru nanoparticles were clearly shown to be inside the mesopores of MCM-41 from the TEM image. These nanocomposites used as catalysts for hydrogenation was demonstrated. The efficiency of the scCO2 prepared Ru/MCM-41 catalyst was nearly 8 times than that of a Ru/MCM-41 catalyst prepared by conventional impregnation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号