首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycrystalline BiFe1−xNbxO3 ceramics have been synthesized by standard solid-state reaction method. The effect of Nb substitution on the dielectric, magnetic and magnetoelectric properties of the BiFeO3 multiferroic perovskite was studied. X-ray diffraction pattern revealed that all the samples with x = 0.00-0.10 showed rhombohedral perovskite structure. We obtained single phase upto doping concentration of x = 0.05 and with further increase in Nb concentration, some impurity peaks appeared. An anomaly in the dielectric constant (?) and dielectric loss (tan (δ)) in the vicinity of the antiferromagnetic Néel temperature (TN) was observed. Nb substitution reduced the antiferromagnetic Néel temperature (TN) in BiFe1−xNbxO3. Proper amount of Nb could decrease the dielectric loss. Magnetic hysteresis loops measured at 5 K/300 K and temperature dependent magnetization curves indicated ferromagnetism in Nb substituted BiFeO3 ceramics. The room temperature magnetic moment was found to increase with increase in Nb concentration. The dependence of dielectric constant on the magnetic field is an evidence of magnetoelectric coupling in BiFe1−xNbxO3 ceramics.  相似文献   

2.
Lead-free piezoelectric (Bi0.95Na0.75K0.20−xLix)0.5Ba0.05TiO3 ceramics have been prepared by conventional process for different lithium substitutions. The SEM images show that the ceramics are well sintered at 1428 K. Dielectric and ferroelectric measurements have been performed. With the increasing of lithium substitution, the Curie temperature of the (Bi0.95Na0.75K0.20−xLix)0.5Ba0.05TiO3 ceramics shifts from 570 K to 620 K, but the maximum value of the dielectric constant decreases from 6700 to 4700 correspondingly. A relatively larger remanent polarization of 36.8 μC/cm2 has been found in the x = 0.05 sample. The coercive field decreases as the lithium substitution amount increases. An optimized d33 = 194 × 10− 12 C/N and a relative dielectric constant εr = 1510 have been obtained in (Bi0.95Na0.75K0.15Li0.05)0.5Ba0.05TiO3.  相似文献   

3.
Microwave dielectric ceramics in the Sr1−xCaxLa4Ti5O17 (0 ≤ x ≤ 1) composition series were prepared through a solid state mixed oxide route. All the compositions formed single phase ceramics within the detection limit of in-house X-ray diffraction when sintered in the temperature range 1450-1580 °C. Theoretical density and molar volume decreased due to the substitution of Ca2+ for Sr2+ which was associated with a decrease in the dielectric constant (?r) and temperature coefficient of resonant frequency (τf) but an increase in quality factor, Qfo. Optimum properties were achieved for Sr0.4Ca0.6La4Ti5O17 which exhibited, ?r ∼ 53.7, Qfo ∼ 11,532 GHz and τf ∼ −1.4 ppm/°C.  相似文献   

4.
Calcium barium niobate Ca0.28Ba0.72Nb2O6 (CBN-28) crystals were successfully grown by the Czochralski method. X-ray powder diffraction experiments indicated that CBN single crystals are tetragonal with a = 12.432(±0.002) Å and c = 3.957(±0.001) Å, which have almost the same structure as the Sr0.50Ba0.50Nb2O6 (SBN-50) crystal. The thermal expansion coefficient perpendicular to Z-direction had been measured to be 1.25 × 10−5 K−1 between 293.15 and 572.15 K, and along Z-axis was negative between 298.15 and 543.15 K. The specific heat of the crystal had been measured by the differential scanning calorimetric experiments. The transmittance spectra from 200 to 3200 nm were also measured. The measured temperature dependence of dielectric constants showed that the Curie temperature of the CBN-28 crystals is 260 °C, which is about 200 °C higher than that of the (SBN) crystal.  相似文献   

5.
The correlation of crystal structure and microwave dielectric properties for Zn(Ti1−xSnx)Nb2O8 ceramics were investigated. The Zn(Ti1−xSnx)Nb2O8 ceramics contained ZnTiNb2O8 and an unknown Columbite-type phase. The columbite structure phase with increasing degree of ordering led to decrease of dielectric constant, increase of Qf and τf. The ZnTiNb2O8 with decreasing cation valence led to increase of τf. The typical values were: ? = 30.88, Qf = 43,500 GHz, τf = −54.32 × 10−6/ °C.  相似文献   

6.
Lead-free (K0.5Na0.5)(Nb1−xTax)O3 ceramics with x = 0.00-0.30 were prepared by the solid-state reaction technique. The effects of Ta on microstructure, crystallographic structure, phase transition and piezoelectric properties have been investigated. It has been shown that the substitution of Ta decreases Curie temperature TC and orthorhombic-tetragonal phase transition temperature TO-T, while increasing the rhombohedral-orthorhombic phase transition temperature TR-O. In addition, piezoelectric activity is enhanced with the increase of Ta content. The ceramics with x = 0.30 have the high value of piezoelectric coefficient d33 = 205 pC/N. Moreover, kp shows little temperature dependence between −75° C and 75 °C, and d33 exhibits very good thermal stability over the range from −196 °C to 75 °C in the aging test.  相似文献   

7.
High dielectric constant and low loss ceramics in the system Ba2 − xSrxLa3Ti3NbO15 (x = 0-1) have been prepared by conventional solid-state ceramic route. Ba2 − xSrxLa3Ti3NbO15 solid solutions adopted A5B4O15 cation-deficient hexagonal perovskite structure for all compositions. The materials were characterized at microwave frequencies. They show a linear variation of dielectric properties with the value of x. Their dielectric constant varies from 48.34 to 43.03, quality factor Qu × f from 20,291 to 39,088 GHz and temperature variation of resonant frequency from 8 to 1.39 ppm/°C as the value of x increases. These low loss ceramics might be used for dielectric resonator (DR) applications.  相似文献   

8.
(1 − x) (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 − x BiFeO3 (x = 0, 0.002, 0.004, 0.006, 0.008, 0.01) lead-free piezoelectric ceramics were prepared by the conventional ceramic processing. The compositional dependence of the phase structure and the electrical properties of the ceramics were studied. A morphotropic phase boundary between the orthorhombic and tetragonal phases was identified in the composition range of 0.004 < x < 0.006. The ceramics near the morphotropic phase boundary exhibit a strong compositional dependence and enhanced piezoelectric properties. The ceramics with 0.6 mol.% BiFeO3 exhibit good electrical properties (d33 ∼ 246 pC/N, kp ∼ 43%, Tc ∼ 285 °C, ?r ∼ 1871, and tan δ ∼ 1.96%). These results show that the (1 − x) (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 − x BiFeO3 ceramic is a promising lead-free piezoelectric material for applications in different devices.  相似文献   

9.
KxNa1 − xNbO3 ceramic powders have been successfully synthesized in different salts (NaCl, KCl, NaCl-KCl). Our results reveal that KxNa1 − xNbO3 powders with single-phase perovskite structure can be formed at a low temperature such as 750 °C. The type of salts has significant effects on the morphology and chemical composition of the powders. As Na+ has a higher diffusing rate and occupies the A-site in the perovskite structure more easily as compared to K+, the powder contains only a small amount of K+ (x ∼ 0.10) when it is synthesized according to formula K0.5Na0.5NbO3 and in a flux containing the same molar content of Na+ and K+. By using a NaCl or KCl salt, the K+ concentration x can be adjusted to almost 0 and 0.77, respectively.  相似文献   

10.
The effects of reduction and Ga-doping on the physicochemical properties of A-site deficient perovskites Sr0.9Ti0.8−xGaxNb0.2O3 (x = 0, 0.05, 0.1, 0.15 and 0.2) are reported. With 10% Ga doping, the sample sintered in air and treated at 1400 °C in H2 atmosphere exhibits the highest electrical conductivity. It is found that the Ga-doping lowers the sinterability but promotes the reduction of Sr0.9Ti0.8−xGaxNb0.2O3. The XRD analysis on the reduced samples suggests that some cations are reduced during the treatment. However, without high temperature pre-reduction, the improvement of Ga-doping is limited and the overall cell performance using Sr0.9Ti0.8−xGaxNb0.2O3 as an anode without catalysts is still relatively low.  相似文献   

11.
Sr2−xCaxBi4Ti5O18(x = 0, 0.05) powders synthesized by solid state route were uniaxially pressed and sintered at 1225 °C for 2 h. The obtained dense ceramics exhibited crystallographic anisotropy with a dominant c axis parallel to the uniaxial pressing direction which was quantified in terms of the Lotgering factor. Microstructure anisotropy of both compositions (x = 0, 0.05) consisted of plate like grains exhibiting their larger surfaces mostly perpendicular to the uniaxial pressing direction. Dielectric and ferroelectric properties of Sr2−xCaxBi4Ti5O18 ceramics were measured under an electric field (E) applied parallel and perpendicularly to uniaxial pressing direction. The obtained dielectric ?R(T) and polarization (P-E) curves depended strongly on E direction thus denoting a significant effect from microstructure and crystallographic texture. Sr2−xCaxBi4Ti5O18 properties were also significantly affected by Ca content (x): Curie temperature increased from 280 °C (x = 0) to 310 °C (x = 0.05) while ?R and remnant polarization decreased for x = 0.05. The present results are discussed within the framework of the processing and crystal structure-properties relationships of Aurivillius oxides ceramics.  相似文献   

12.
Single crystals of (1 − x)BaTiO3 + xNaNbO3 (BTNN) for x = 0.84 were obtained by high temperature solution growth using Na2B4O7 as solvent. The room temperature crystal structure of BTNN 16/84-phase was determined from X-ray single crystal diffraction data, in the tetragonal system with space group P4bm. The refinement from 246 independent reflections led to the following parameters: a = b = 5.5845(3) Å, c = 3.9453(2) Å, V = 123.041(11) Å3, Z = 2, with final cRwp = 0.150 and RB = 0.041. The structure of BTNN 16/84-phase can be described as a three-dimensional framework built up from (Nb-Ti)O6 octahedra with Na and Ba in the dodecahedral site of perovskite-like type. Some mm3-sized crystals have been selected and various dielectric measurements (ferroelectric, pyroelectric, and piezoelectric) have been performed. Transition from paraelectric to ferroelectric state at around 460 K has been observed to be in good agreement with ceramics of closer composition. Dielectric, piezoelectric and pyroelectric measurements on crystal confirm the ferroelectric behaviour of BTNN 16/84.  相似文献   

13.
Lead-free ceramics (1 − x)(K0.5Na0.5)0.95Li0.05Sb0.05Nb0.95O3-xSmAlO3 (KNLNS-xSA) were prepared by conventional sintering technique. The phase structure, dielectric and piezoelectric properties of the ceramics were investigated. All compositions show a main perovskite structure, exhibiting room-temperature symmetries of tetragonal at x ≤ 0.0075, of pseudo-cubic at x = 0.0100. The Curie temperature of KNLNS-xSA ceramics decreases with increasing SmAlO3 content. Moreover, the addition of SmAlO3 can effectively broaden the sintering temperature range of the ceramics. The KNLNS-xSA ceramic with x = 0.0050 has an excellent electrical behavior of piezoelectric coefficient d33 = 226 pC/N, planar mode electromechanical coupling coefficient kp = 38%, dielectric loss tan δ = 3.0%, mechanical quality factor Qm = 60, and Curie temperature TC = 327 °C, suggesting that this material could be a promising lead-free piezoelectric candidate for piezoelectric applications.  相似文献   

14.
Infrared optical properties of SrBi2−xNdxNb2O9 (SBNN) ceramics with different Nd compositions (from 0 to 0.2) have been investigated by near-normal incident reflectance technique. The experimental spectra in the wavenumbers range of 350-1500 cm−1 were analyzed using the Lorentz oscillator model for five infrared-active phonon mode observed. It is found that the frequencies of the NbO6 tilting and symmetric stretching modes linearly decrease with the Nd composition due to the octahedra distortion. The high-frequency dielectric constant varies in the range from 4.55 ± 0.04 to 4.80 ± 0.04. Owing to the contribution from the stronger electronic transitions, the real part of dielectric function Re(?) is estimated to about 4.0 in the high-frequency transparent region.  相似文献   

15.
Lead-free piezoelectric ceramics (1 − x)(K0.5Na0.5)NbO3-xLiNbO3 have been synthesized by traditional ceramics process without cold-isostatic pressing. The effect of the content of LiNbO3 and the sintering temperature on the phase structure, the microstructure and piezoelectric properties of (1 − x)(K0.5Na0.5)NbO3-xLiNbO3 ceramics were investigated. The result shows that the phase structure transforms from the orthorhombic phase to tetragonal phase with the increase of the content of LiNbO3, and the orthorhombic and tetragonal phase co-exist in (K0.5Na0.5)NbO3-LiNbO3 ceramics when the content of LiNbO3 is about 0.06 mol. The sintering temperature of (1 − x)(K0.5Na0.5)NbO3-xLiNbO3 decreases with the increase of the content of LiNbO3. The optimum composition for (1 − x)(K0.5Na0.5)NbO3-xLiNbO3 ceramics is 0.94(K0.5Na0.5)NbO3-0.06LiNbO3. The optimum sintering temperature of 0.94(K0.5Na0.5)NbO3-0.06LiNbO3 ceramics is 1080 °C. Piezoelectric properties of 0.94 (K0.5Na0.5)NbO3-0.06LiNbO3 ceramics under the optimum sintering temperature are piezoelectric constant d33 of 215 pC/N, planar electromechanical coupling factor kp of 0.41, thickness electromechanical coupling factor kt of 0.48, the mechanical quality factor Qm of 80, the dielectric constant of 530 and the Curie temperature Tc = 450 °C, respectively. The results indicate that 0.94(K0.5Na0.5)NbO3-0.06LiNbO3 piezoelectric ceramics is a promising candidate for lead-free piezoelectric ceramics.  相似文献   

16.
The (0 0 l) textured BaBi2(Nb1 − xVx)2O9 (where x = 0, 0.03, 0.07, 0.1 and 0.13) ceramics were fabricated via the conventional melt-quenching technique followed by high temperature heat-treatment (800-1000 °C range). The influence of vanadium content and sintering temperature on the texture development and relative density were investigated. The samples corresponding to the composition x = 0.1 sintered at 1000 °C for 10 h exhibited the maximum orientation of about 67%. The Scanning electron microscopic studies revealed the presence of platy grains having the a-b planes perpendicular the pressing axis. The dielectric constant and the pyroelectric co-efficient values in the direction perpendicular to the pressing axis were higher. The anisotropy in the dielectric constant is about 100 (at 100 kHz) at the dielectric maximum temperature and anisotropy in the pyroelectric co-efficient is about 50 μC cm−2 °C−1 in the vicinity of pyroelectric anomaly for the sample corresponding to the composition x = 0.1 sintered at 1000 °C. Higher values of the dielectric loss and electrical conductivity were observed in the direction perpendicular to the pressing axis which is attributed to the high oxygen ion conduction in the a-b planes.  相似文献   

17.
Single-crystalline Ti1−xNbxO2 (x = 0.2) films of 40 nm thickness were deposited on SrTiO3 (100) substrates by the pulsed laser deposition (PLD) technique. X-ray diffraction measurement confirmed epitaxial growth of anatase (001) film. The resistivity of Ti1−xNbxO2 films with x ≥ 0.03 is 2-3 × 10− 4 Ω cm at room temperature. The carrier density of Ti1−xNbxO2, which is almost proportional to the Nb concentration, can be controlled in a range of 1 × 1019 to 2 × 1021 cm− 3. Optical measurements revealed that internal transmittance in the visible and near-infrared region for films with x = 0.03 was more than 97%. These results demonstrate that the presently developed anatase Ti1−xNbxO2 is one of the promising candidates for the practical TCOs.  相似文献   

18.
Ferroelectric Sr1−xBaxBi2(Nb0.5Ta0.5)2O9 and Sr0.5Ba0.5Bi2(Nb1−yTay)2O9 were synthesized by solid state reaction route. X-ray diffraction studies confirm the formation of single phase layered perovskite solid solutions over a wide range of compositions (x=y=0.0, 0.25, 0.50, 0.75 and 1). The lattice parameters and the Curie temperature (Tc) have been found to have linear dependence on x and y. Transmission electron microscopy (TEM) suggest the lowering of orthorhombic distortion with increasing Ba2+ substitution. Variations in microstructural features as a function of x and y were monitored by scanning electron microscopy (SEM). The dielectric constant at room temperature increases with increase in both x and y. Interestingly Ba2+ substitution on Sr2+ site induces diffused phase transition and diffuseness increases with increasing Ba2+ concentration.  相似文献   

19.
The phase structure, microwave dielectric properties, and their stability with different annealing conditions have been investigated in (Li1/4Nb3/4) substituted ZrxSnyTizO4 system. The sintering temperature of ZrxSnyTizO4 ceramic was lowered from 1500 to 1140 °C by (Li1/4Nb3/4) substitution. Both X-ray diffraction (XRD) analysis and electron diffraction (ED) analysis revealed that the (Li1/4Nb3/4) substituted ZrxSnyTizO4 ceramic crystallized as the high-temperature disordered ZrTiO4 phase. As the content of Sn increased from 0.10 to 0.30, the permittivity of the (Zr1−xSnx)(Li1/4Nb3/4)0.4Ti0.6O4 ceramic decreased gradually from 35.5 to 31.5, the Qf value increased from 37,800 to 58,300 GHz, and TCF value shifted slightly from −4.5 to −33.0 ppm °C−1. Both the phase structure and microwave dielectric properties of (Zr1−xSnx)(Li1/4Nb3/4)0.4Ti0.6O4 ceramics were stable with annealing conditions.  相似文献   

20.
The effect of CaO-SiO2-B2O3 (CSB) glass addition on the sintering temperature and dielectric properties of BaxSmyTi7O20 ceramics has been investigated using X-ray diffraction, scanning electron microscopy and differential thermal analysis. The CSB glass starts to melt at about 970 °C, and a small amount of CSB glass addition to BaxSmyTi7O20 ceramics can greatly decrease the sintering temperature from about 1350 to about 1260 °C, which is attributed to the formation of liquid phase. It is found that the dielectric properties of BaxSmyTi7O20 ceramics are dependent on the amount of CSB glass and the microstructures of sintered samples. The product with 5 wt% CSB glass sintered at 1260 °C is optimal in these samples based on the microstructure and the properties of sintering product, when the major phases of this material are BaSm2Ti4O12 and BaTi4O9. The material possesses excellent dielectric properties: ?r = 61, tan δ = 1.5 × 10−4 at 10 GHz, temperature coefficient of dielectric constant is −75 × 10−6 °C−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号