首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Large grain polycrystalline silicon (poly-Si) films on glass substrates have been deposited on an aluminum-induced crystallization (AIC) seed layer using hot-wire chemical vapor deposition (HWCVD). A poly-Si seed layer was first formed by the AIC process and a thicker poly-Si film was subsequently deposited upon the seed layer using HWCVD. The effects of AIC annealing parameters on the structural and electrical properties of the poly-Si seed layers were characterized by Raman scattering spectroscopy, field-emission scanning electron microscopy, and Hall measurements. It was found that the crystallinity of seed layer was enhanced with increasing the annealing duration and temperature. The poly-Si seed layer formed at optimum annealing parameters can reach a grain size of 700 nm, hole concentration of 3.5 × 1018 cm− 3, and Hall mobility of 22 cm2/Vs. After forming the seed layer, poly-Si films with good crystalline quality and high growth rate (> 1 nm/s) can be obtained using HWCVD. These results indicated that the HWCVD-deposited poly-Si film on an AIC seed layer could be a promising candidate for thin-film Si photovoltaic applications.  相似文献   

2.
Hot-wire chemical vapor deposition (HWCVD) and plasma-enhanced chemical vapor deposition (PECVD) of Si thin films show different growth kinetic processes. According to the fractal analysis, the root-mean-square surface roughness δ and the film thickness d have the relation of δ ∼ dβ, where β is the dynamic scaling exponent related to the film growth mechanism. It was found that β is 0.44 for Si films prepared by HWCVD and 0.24 by PECVD. The former refers to a stochastic deposition while the latter corresponds to the finite diffusion of the radicals. Monte Carlo simulations indicate that the sticking process of growth radicals play an important role in determining the morphology of Si films.  相似文献   

3.
B. Gorka  I. Sieber  F. Fenske  S. Gall 《Thin solid films》2007,515(19):7643-7646
In this paper we report on homoepitaxial growth of thin Si films at substrate temperatures Ts = 500-650 °C under non-ultra-high vacuum conditions by using electron beam evaporation. Si films were grown at high deposition rates on monocrystalline Si wafers with (100), (110) and (111) orientations. The ultra-violet visible reflectance spectra of the films show a dependence on Ts and on the substrate orientation. To determine the structural quality of the films in more detail Secco etch experiments were carried out. No etch pits were found on the films grown on (100) oriented wafers. However, on films grown on (110) and (111) oriented wafers different types of etch pits could be detected. Films were also grown on polycrystalline silicon (poly-Si) seed layers prepared by an Aluminum-Induced Crystallisation (AIC) process on glass substrates. Electron Backscattering Diffraction (EBSD) shows that the film growth proceeds epitaxially on the grains of the seed layer. But a considerably higher density of extended defects is revealed by Secco etch experiments.  相似文献   

4.
From TEM, XRD and Raman measurements, we compare the crystallization kinetics when HWCVD and PECVD a-Si:H films, containing different initial film hydrogen contents (CH), are crystallized by annealing at 600 °C. For the HWCVD films, the nucleation rate increases, and the incubation time and the full width at half maximum (FWHM) of the XRD (111) peak decrease with decreasing film CH. However, the crystallization kinetics of HWCVD and PECVD films of similar initial film CH are quite different, suggesting that other factors beside the initial film hydrogen content affect the crystallization process. Even though the bonded hydrogen evolves very early from the film during annealing, we suggest that the initial spatial distribution of hydrogen plays a critical role in the crystallization kinetics, and we propose a preliminary model to describe this process.  相似文献   

5.
The film structure and H bonding of high deposition rate a-SiGe:H i-layers, deposited by HWCVD and containing ~ 40 at.% Ge, have been investigated using deposition conditions which replicate those used in n-i-p solar cell devices. Increasing the germane source gas depletion in HWCVD causes not only a decrease in solar cell efficiency from 8.64% to less than 7.0%, but also an increase in both the i-layer H preferential attachment ratio (PA) and the film microstructure fraction (R?). Measurements of the XRD medium range order over a wide range of germane depletion indicate that this order is already optimum for the HWCVD i-layers, suggesting that energetic bombardment of a-SiGe:H films may not always be necessary to achieve well ordered films. Preliminary structural comparisons are also made between HWCVD and PECVD device layers.  相似文献   

6.
A series of approximately 40 nm thick Co80Pt20 thin films have been sputter-deposited onto a combination of Ta, Pt and Ru underlayers grown at different layer thicknesses. The addition of a Ta seed layer to the Pt and Ru underlayers caused the {0002} hexagonal close packed (hcp) Co80Pt20's c-axis dispersion's full width at half maximum to narrow from approximately 12° to approximately 2°. In-situ stress measurements taken during deposition showed that the Ta seed layer reduced the growth stresses for the Pt and an initial 1 nm of growth for the Ru underlayers. The Ru layer thickness controlled the c/a ratio of the hcp Co80Pt20 film which regulated the degree of magnetic easy-axis alignment in the Co80Pt20 film. The optimal underlayer material stack for Co80Pt20 with a narrow c-axis dispersion and a high degree of magnetic easy-axis alignment was 5 nm Ta/10 nm Pt/5 nm Ru.  相似文献   

7.
G. Ekanayake 《Vacuum》2006,81(3):272-278
Al-induced crystallisation of microcrystalline Si thin films prepared by electron cyclotron resonance plasma-enhanced chemical vapour deposition (ECR-PECVD) on glass and SiO2 coated Si wafers has been studied. The starting structure was substrate/μc-Si/Al. Annealing this structure in the temperature range 370-520 °C, immediately following deposition of the Al layer, resulted in successful layer exchange and the formation of a substrate/Al+Si layer/poly-Si geometry. The top poly-Si layer exhibited grain sizes generally in the range ∼2-6 μm, although larger grains were also sparsely present. The films did not exhibit any appreciable degree of preferred orientation. The surface roughness was relatively high with a Ra value of ∼20 nm.  相似文献   

8.
Q.G. Chi 《Thin solid films》2009,517(17):4826-4829
Lanthanum-and calcium-modified PbTiO3 (PLCT) ferroelectric thin films were successfully prepared on Pt(111)/Ti/SiO2/Si substrates by pulsed laser deposition. Influence of TiOx seed layer on texture and electric properties of PLCT films was investigated. It is found the PLCT films without seed layer exhibited highly (100)-textured, while using about 9 nm TiOx as seed layer lead to highly (301)-textured. The PLCT film with TiOx seed layer possess higher remnant polarization (Pr = 26 µC/cm2), better pyroelectric coefficient and figure of merit at room temperature (p = 370 µC/m2k, Fd = 190 × 10− 5 Pa− 1/2) than that of film without seed layer. The mechanism of the enhanced electric properties was also discussed.  相似文献   

9.
Compact and transparent ZnO films were deposited on the ITO/glass substrates from zinc nitrate aqueous solution by the two-step electrodeposition technique. While the first potentiostatic step was used to produce ZnO seed layer, the ZnO film growth has been done galvanostatically. Effects of the potentiostatic parameters on the crystal structure, morphology and optical properties of ZnO films were investigated. Results show that ZnO films with highly c-axis preferred orientation can been obtained when the potentiostatic deposition at −1.2 V for 15 s has been applied. Such an observation might be attributed to the etching process of ITO substrate in the diluted HCl solution. The film exhibits smooth and compact morphology, high transmittance in the visible band (>80%) and sharp absorption edge (at ∼370 nm). The analysis on the growth mechanism indicates that the short potentiostatic process prior to the film growth can produce ZnO seed layer and substitute the initial nucleation process in the conventional one-step galvanostatic deposition, thus increasing the nucleation density and preventing the formation of loose structures.  相似文献   

10.
The ability to optimizate the preparation of Lead Zirconate Titanate (PZT) films on platinized Si substrate by pulsed laser deposition was demonstrated. The effect of the modification of the interface film/electrode through the use of a (La,Sr)CoO3 (LSCO) seed layer on the remnant polarization, fatigue endurance and stress in PZT films was studied. An improvement on the ferroelectric properties was found with the using of the LSCO layer. A remnant polarization (Pr) of 19.8 μC/cm2 and 4.4 μC/cm2 for films with and without the LSCO layer were found. In the same way the polarization fatigue decreases significantly after deposition of the LSCO layer between the film and substrate. Atomic force microscopy (AFM) images revealed a different growth process in the films. Current–voltage (IV) measurements showed that the use of LSCO seed layer improves the leakage current and, on the other hand the conduction mechanisms in the film without LSCO, after the fatigue test, was found to be changed from Schottky to Poole–Frenkel. The trap activation energy (about 0.14 eV) determined from Poole–Frenkel mode agrees well with the energy level of oxygen vacancies. The films stresses were estimated by XRD in order to explain the improvement on the structure and consequentially ferroelectric properties of the films. The model proposed by Dawber and Scott was found to be in agreement with our experimental data, which seems to predict that the oxygen vacancies play an important role on fatigue.  相似文献   

11.
We have demonstrated that hot-wire chemical vapor deposition (HWCVD) is an excellent technique to produce high-quality epitaxial silicon at high rates, at substrate temperatures from 620 to 800 °C. Fast, scalable, inexpensive epitaxy of high-quality crystalline Si (c-Si) in this temperature range is a key element in creating cost-competitive film Si PV devices on crystalline seed layers on inexpensive substrates such as display glass and metal foil. We have improved both the quality and rate of our HWCVD Si epitaxy in this display-glass-compatible T range. We understand factors critical to high-quality epitaxial growth and obtain dislocation densities down to 6 × 104 cm−2 by techniques that reduce the surface oxygen contamination at the moment growth is initiated. We have also developed and validated a model of the HWCVD silicon growth rate, based on fundamentals of reaction chemistry and ideal gas physics. This model enables us to predict growth rates and calculate the sticking coefficient of the Si radicals contributing to film formation between 300 and 800 °C. We obtain efficiencies up to 6.7% with a 2.5-micron absorber layer grown on heavily-doped ‘dead’ Si wafers although these cells still lack hydrogenation and light trapping. Open-circuit voltages up to 0.57 V are obtained on 2-μm cells. Efficient film crystal silicon photovoltaics will require dislocation spacing more than 6 times the cell thickness, or else effective H passivation of the dislocations.  相似文献   

12.
《Thin solid films》2006,515(2):452-455
Novel hydrogen dilution profiling (HDP) technique was developed to improve the uniformity in the growth direction of μc-Si:H thin films prepared by hot wire chemical vapor deposition (HWCVD). It was found that the high H dilution ratio reduces the incubation layer from 30 nm to less than 10 nm. A proper design of hydrogen dilution profiling improves the uniformity of crystalline content, Xc, in the growth direction and restrains the formation of micro-voids as well. As a result the compactness of μc-Si:H films with a high crystalline content is enhanced and the stability of μc-Si:H thin film against the oxygen diffusion is much improved. Meanwhile the HDP μc-Si:H films exhibit the low defect states. The high nucleation density from high hydrogen dilution at early stage is a critical parameter to improve the quality of μc-Si:H films.  相似文献   

13.
多晶硅薄膜的铝诱导晶化法制备及其晶粒的择优取向特性   总被引:1,自引:0,他引:1  
采用铝诱导非晶硅薄膜晶化技术制备了多晶硅薄膜,并研究了多晶硅的成核和生长特性。非晶硅薄膜采用等离子体增强化学气相沉积法制备,其表面沉积铝薄膜后经不同温度的氮氛围退火处理。结果表明,退火后的硅薄膜层与铝层发生置换,所生长的多晶硅颗粒的平均尺寸约为150nm。X射线衍射分析结果揭示,薄膜的晶向显著依赖于退火温度,较低温度下,铝诱导晶化速率较慢,薄膜的优化晶向与非晶硅薄膜中团簇的初始原子排列趋势紧密相关。而较高温度下,铝诱导晶化促使多晶硅(111)择优成核及随后的固相生长。  相似文献   

14.
Amorphous silicon films have been made by HWCVD at a very low substrate temperature of ≤ 100 °C (in a dynamic substrate heating mode) without artificial substrate cooling, through a substantial increase of the filament-substrate distance (∼ 80 mm) and using one straight tantalum filament. The material is made at a reasonable deposition rate of 0.11 nm/s. Optimized films made this way have device quality, as confirmed by the photosensitivity of > 105. Furthermore, they possess a low structural disorder, manifested by the small Γ/2 value (half width at half maximum) of the transverse optic (TO) Si-Si vibration peak (at 480 cm− 1) in the Raman spectrum of ∼ 30.4 cm− 1, which translates into a bond angle variation of only ∼ 6.4°. The evidence gathered from the studies on the structure of the HWCVD grown film by three different techniques, Raman spectroscopy, spectroscopic ellipsometry and transmission electron microscopy, indicate that we have been able to make a photosensitive material with a structural disorder that is smaller than that expected at such a low deposition temperature.Tested in a p-i-n solar cell on Asahi SnO2:F coated glass (without ZnO at the back reflector), this i-layer gave an efficiency of 3.4%. To our knowledge, this is the first report of a HWCVD thin film silicon solar cell made at such a low temperature.  相似文献   

15.
Near equiatomic Ni-Ti films have been deposited by magnetron co-sputtering on TiN films with a topmost layer formed by < 111> oriented grains (TiN/SiO2/Si(100) substrate) in a chamber installed at a synchrotron radiation beamline. In-situ X-ray diffraction during Ni-Ti film growth and their complementary ex-situ characterization by Auger electron spectroscopy, scanning electron microscopy and electrical resistivity measurements during temperature cycling have allowed us to establish a relationship between the structure and processing parameters.A preferential development of < 110> oriented grains of the B2 phase since the beginning of the deposition has been observed (without and with the application of a substrate bias voltage of −45 and −90 V). The biaxial stress state is considerably influenced by the energy of the bombarding ions, which is dependent on the substrate bias voltage value applied during the growth of the Ni-Ti film. Furthermore, the present work reveals that the control of the energy of the bombarding ions is a promising tool to vary the transformation characteristics of Ni-Ti films, as shown by electrical resistivity measurements during temperature cycling.The in-situ study of the structural evolution of the growing Ni-Ti film as a consequence of changing the Ti:Ni ratio during deposition (on a TiN<111> layer) has also been performed. The preferential growth of < 110> oriented grains of the Ni-Ti B2 phase has been as well observed despite the precipitation of Ti2Ni during the deposition of a Ti-rich Ni-Ti film fraction. Functionally graded Ni-Ti films should lead to an intrinsic “two-way” shape memory effect which is a plus for the miniaturization of Ni-Ti films based devices in the field of micro-electro-mechanical systems.  相似文献   

16.
The structure and the transport properties of microcrystalline silicon films prepared by hot-wire/catalytic chemical vapor deposition (HWCVD/Cat-CVD), using different dilution ratios of silane in hydrogen, were investigated. Spectroscopic ellipsometry analysis revealed an increase in the thickness of amorphous incubation layer formed before nucleation and a reduction of the void volume fraction when hydrogen dilution decreases. Thus, a specific microcrystalline silicon film growth process was proposed, based on a variable dilution of silane in hydrogen. For films prepared in such conditions, the formation of the incubation layer was inhibited, which led to a drastic improvement in carrier transport along the growth direction as proved by the diffusion-induced time-resolved microwave conductivity data.  相似文献   

17.
Crystallized TiO2 thin films were deposited on a non-heated substrate by two methods: oxygen-ion-assisted reactive evaporation (ORE) and high-rate reactive sputtering (HRS) using two sputtering sources. When the films were deposited on an unheated glass substrate, amorphous films were initially grown on the substrate in case of both deposition methods, although an increase in oxygen-ion energy above 600 eV led to a growth of a crystallized layer on the amorphous films in the case of ORE. When the films were deposited by HRS on a crystallized TiO2 seed layer, homo-epitaxial growth was observed, and crystallized TiO2 films with an excellent hydrophilic property were obtained on unheated substrate. In contrast, when the films were deposited by ORE, amorphous films were initially grown on the crystallized TiO2 seed layer in a similar manner to the deposition of films on a glass substrate, and homo-epitaxial growth was not observed. These results suggest that the large kinetic energy of titanium atoms arriving at the substrate during HRS is a key factor in promoting epitaxial growth of the TiO2 film at low temperature.  相似文献   

18.
Microcrystalline silicon carbide (μc-SiC:H) thin films in stoichiometric form were deposited from the gas mixture of monomethylsilane (MMS) and hydrogen by Hot-Wire Chemical Vapor Deposition (HWCVD). These films are highly conductive n-type. The optical gap E04 is about 3.0-3.2 eV. Such μc-SiC:H window layers were successfully applied in n-side illuminated n-i-p microcrystalline silicon thin film solar cells. By increasing the absorber layer thickness from 1 to 2.5 μm, the short circuit current density (jSC) increases from 23 to 26 mA/cm2 with Ag back contacts. By applying highly reflective ZnO/Ag back contacts, jSC = 29.6 mA/cm2 and η = 9.6% were achieved in a cell with a 2-μm-thick absorber layer.  相似文献   

19.
S. Nazarpour  A. Cirera 《Thin solid films》2010,518(20):5715-5719
Thin films of Au-Pd of varying composition were formed by electron beam physical vapor deposition. They were characterized and their application as optical hydrogen sensors was studied. In addition, parameters of sensing performance such as Pd deficiency during deposition, grain size, compositional homogeneity, and the appearance of a natural buffer layer, were examined. Following deposition, Au-Pd films exhibited high atomic intermixing, and a PdOx buffer layer formed spontaneously. This layer makes it possible to increase film thickness, which improves the intensity of the detecting signal. Accordingly, the suggested deposition method may optimize recent efforts to use Au20 wt.%-Pd thin alloy film in optical hydrogen sensors.  相似文献   

20.
Aluminum-induced crystallization of amorphous silicon films is discussed. Amorphous Si films were deposited by hot wire chemical vapor deposition onto Al coated glass substrates at 430 °C. Complete crystallization of a-Si films was achieved during a-Si deposition by controlling Al and Si layer thicknesses. The grain structure of the poly-Si films formed on glass substrate was evaluated by optical and electron microscopy. Continuous poly-Si films were obtained using Al layers with a thickness of 500 nm or less. The average grain size was found to be 10-15 μm, corresponding to a grain size/thickness ratio greater than 20.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号