首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Abstract

A new method for preparing high bending strength porous silicon nitride ceramics with controlled porosity was developed using a pressureless sintering technique, using zirconium pyrophosphate as a binder. The fabrication process was described in detail and the sintering mechanism of porous ceramics was analysed by an X-ray diffraction method. The microstructure and mechanical properties of the porous Si3N4 ceramics were investigated, as a function of the content of ZrP2O7. The resultant porous silicon nitride ceramics sintered at low temperature (1000 and 1100°C) showed fine micropore structure and a high bending strength. Porous silicon nitride ceramics with porosity of 34–47%, a bending strength of 40–114 MPa and a Young's modulus of 20–50 GPa were obtained.  相似文献   

2.
La0.7Sr0.3Co0.5Fe0.5O3 (LSCF) porous materials have attracted a substantial interest for application as cathode in solid oxide fuel cells of intermediate temperature (IT-SOFC). This work investigates the effect of different propellants (urea, glycine, citric acid and sucrose) in the preparation of LSCF powders by the combustion method and also the influence of the sintering temperature on the porosity and electrical conductivity. TGA profiles of the as-prepared samples showed a lower weight loss for the sample prepared with glycine, associated with the higher combustion temperature. XRD patterns presented characteristic reflections of LSFC perovskite and a small formation of secondary phases, with nanometric crystallite sizes (9-20 nm). SEM analysis revealed the loose and porous structure of the powder materials. Densification studies were carried within 950-1100 °C, showing that porosity decreased with increasing sintering temperature. Electrical conductivity was measured in the temperature range 300-800 °C and correlated with the sintering temperature.  相似文献   

3.
Soda-lime glass as a substituent for the feldspar was used to prepare high-tension electrical porcelain by standard chemical solid reaction technique. The effect of glass substitution and sintering temperature on the physical properties, microstructure, hardness, modulus of rupture, flexural strength and Dielectric breakdown strength were examined. Zero water absorption (WA %) and apparent porosity (AP %) were achieved for the samples with glass content >15 wt.% sintered at 1100 °C. The apparent density was found to increase with sintering temperature. The Vicker’s micro-hardness increased with both glass addition and sintering temperature. Both of the modulus of rupture (MOR) and flexural strength (σf) had maxima values at 15 wt.% glass addition. The structure and morphology were characterized by X-ray diffraction and scanning electron microscope (SEM). It showed the formation of mullite needles at sintering temperature of 1100 °C, which enhanced the mechanical and electrical properties of the porcelain. The dielectric breakdown strength increased with sintering temperature and glass addition. The highest dielectric strength was found at 10 wt.% of glass addition depending on the Na2O and Fe2O3 content.  相似文献   

4.
In this work, metastable beta Ti-Nb-Zr(Ta) ingots were manufactured by vacuum arc melting. The ingots thus obtained were divided into two batches: the first subjected to cold rolling (CR) from 30 to 85% of thickness reduction and subsequent annealing in the 450 to 900 °C temperature region, and the second atomized to produce 100 μm size powders. This powder was used to manufacture open-cell porous material. Regardless of the CR intensity, Ti-(18…20)Nb-(5…6)Zr (at.%) samples subjected to 600 °C (1 h) annealing showed a significant material softening due to the stress-induced martensitic transformation. The Young's modulus of these alloys varied between 45 and 55 GPa, and the yield stress, between 300 and 500 MPa. The obtained Young's moduli, which are comparable to 55-66 GPa of concurrent beta-titanium alloys and 45-50 GPa of superelastic Ti-Ni alloys, come close to those of cortical bones. Compression testing of the porous material as a function of porosity (from ~ 45 to 66%) and interconnected cell size (d50 from 300 to 760 μm) showed the following properties: Young's modulus from 7.5 to 3.7 GPa, which comes close to that of trabecular bones, and ultimate compression strength, of from 225 to 70 MPa.  相似文献   

5.
Laser processed Ti6Al4V alloy samples with total porosities of 0%, 10% and 20% have been subjected to torsional loading to determine mechanical properties and to understand the deformation behavior. The torsional yield strength and modulus of porous Ti alloy samples was found to be in the range of 185-332 MPa and 5.7-11 GPa, respectively. With an increase in the porosity both the strength and the modulus decreased, and at 20% porosity the torsional modulus of Ti6Al4V alloy was found to be very close to that of human cortical bone. Further, the experiments revealed clear strain hardening and ductile deformation in all the samples, which suggests that the inherent brittleness associated solid-state sintered porous materials can be completely eliminated via laser processing for load bearing metal implant applications.  相似文献   

6.
A specific manufacturing process to obtain continuous glass fiber-reinforced PTFE laminates was studied and some of their mechanical properties were evaluated. Young’s modulus and maximum strength were measured by three-point bending test and tensile test using the Digital Image Correlation (DIC) technique. Adhesion tests, thermal analysis and microscopy were used to evaluate the fiber–matrix adhesion, which is very dependent on the sintering time. The composite material obtained had a Young’s modulus of 14.2 GPa and ultimate strength of 165 MPa, which corresponds to approximately 24 times the modulus and six times the ultimate strength of pure PTFE. These results show that the PTFE composite, manufactured under specific conditions, has great potential to provide structural parts with a performance suitable for application in structural components.  相似文献   

7.
Open-cell porous Ti with a porosity ranging from 35 to 84% was successfully manufactured by sintering titanium fibres. The microstructure of the porous titanium was observed by SEM and the compressive mechanical properties were tested. By adjusting the spiral structure of the porous titanium, the pore size can be controlled in a range of 150–600 μm. With the increasing of the porosity, compressive yield strength and modulus decrease as predicated. However, high mechanical properties were still obtained at a medium porosity, e.g. the compressive yield strength and the modulus are as high as 100–200 MPa and 3.5–4.2 GPa, respectively, when the porosity is in the range of 50–70%. It was suggested that the porous titanium be strong enough to resist handing during implantation and in vivo loading. It is expected to be used as biocompatible implant, because their interconnected porous structures permit bone tissues ingrowth and the body fluids transportation.  相似文献   

8.
This paper reports a novel type of porous titanium (Ti) scaffolds with two interlaced periodic pores that were produced by coating the surfaces of a dual-channeled hydroxyapatite (HA) scaffold, as a supporting framework, with a titanium hydride (TiH2) slurry followed by heat-treatment at 1200 °C for 3 h in a vacuum to convert TiH2 to Ti metal. This method allowed the porous Ti scaffolds to mimic the original pore structure of the dual-channeled HA scaffold in a tightly controlled manner. It was observed that the Ti layer was strongly adhered to the HA layer, owing to the diffusion of P ions into the Ti layer. The fabricated sample showed a high compressive strength of 6.0 ± 0.77 MPa and a porosity of 78 vol.% due to its unique pore structure, as well as perfect interconnections between the pores.  相似文献   

9.
Evolution of porosity and microstructure was observed during densification of lutetium oxide ceramics doped with europium (Lu2O3:Eu) fabricated via vacuum sintering and hot isostatic pressing (HIP’ing). Nano-scale starting powder was uniaxially pressed and sintered under high vacuum at temperatures between 1575 and 1850 °C to obtain densities ranging between 94% and 99%, respectively. Sintered compacts were then subjected to 200 MPa argon gas at 1850 °C to reach full density. Vacuum sintering above 1650 °C led to rapid grain growth prior to densification, rendering the pores immobile. Sintering between 1600 and 1650 °C resulted in closed porosity yet a fine grain size to allow the pores to remain mobile during the subsequent HIP’ing step, resulting in a fully-dense highly transparent ceramic without the need for subsequent air anneal. Light yield performance was measured and Lu2O3:Eu showed ∼4 times higher light yield than commercially used scintillating glass indicating that this material has the potential to improve the performance of high energy radiography devices.  相似文献   

10.
The deformation behavior of a Ti40 titanium alloy was investigated with compression tests at different temperatures and strain rates to evaluate the activation energy and to establish the constitutive equation, which reveals the dependence of the flow stress on strain, strain rate and deformation temperature. The tests were carried out in the temperature range between 900 and 1100 °C and at strain rates between 0.01 and 10 s−1. Hot deformation activation energy of the Ti40 alloy was calculated to be about 372.96 kJ/mol. In order to demonstrate the workability of Ti40 alloy further, the processing maps at strain of 0.5 and 0.6 were generated respectively based on the dynamic materials model. It is found that the dynamic recrystallization of Ti40 alloy occurs at the temperatures of 1050-1100 °C and strain rates of 0.01-0.1 s−1, with peak efficiency of power dissipation of 64% occurring at about 1050 °C and 0.01 s−1, indicating that this domain is optimum processing window for hot working. Flow instability domains were noticed at higher stain rate (≥1 s−1) and stain (≥0.6), which located at the upper part of the processing maps. The evidence of deformation in these domains has been identified by the microstructure observations of Ti40 titanium alloy.  相似文献   

11.
In order to better understand the relationship of processing–structure–mechanical properties of in situ TiB whisker reinforced Ti6Al4V (TiBw/Ti64) composites with a novel network architecture, the effects of sintering parameters on the microstructure and tensile properties of the composites were investigated. TiB whiskers with the highest aspect ratio and the coarsest whiskers were obtained at 1100 °C and 1200 °C due to the skips of whisker growth speeds along the [0 1 0] direction and the [0 0 1] and [1 0 0] directions, respectively. Additionally, TiB whisker with a claw-like structure can be synthesized from one TiB2 polycrystal parent. The quasi-continuous network architecture of TiBw/Ti64 composites can be achieved at higher sintering temperatures more than 1200 °C. The prepared composites with the quasi-continuous network architecture exhibit a superior combination of tensile properties.  相似文献   

12.
This paper reports on the structure and mechanical properties of ~ 2 μm thick nanocomposite (nc-) Ti(N,C)/amorphous diamond like carbon (a-C:H) coatings deposited on 100Cr6 steel substrates, using low temperature (~ 200 °C) DC reactive magnetron sputtering. The carbon content was varied with acetylene partial pressure in order to obtain single layer coatings with different a-C:H carbon phase fractions. The nanocrystalline Ti(N,C) phase is approximately stoichiometric for all coatings and the a-C:H phase fraction increases from 31 to 47 at.% as the coatings stoichiometry changed from TiC1.34 N0.51 to TiC2.48 N0.48, respectively. TiC1.34 N0.51 coatings showed the highest nanoindentation hardness (H) of ~ 14 GPa and a modulus (Er) of ~ 144 GPa; H reduced to < 6 GPa and Er to < 70 GPa for TiC2.48 N0.48 coatings. nc-Ti(N,C)/a-C:H coatings are promising candidates for applications where better matching of the modulus between a relatively low modulus substrate, hard loading support layer and low modulus-high H/E ratio top layer is required.  相似文献   

13.
Zirconium phosphate (ZrP2O7) bonded silicon nitride (Si3N4) porous ceramics were prepared using starch powder as the pore forming agent and pressureless sintering technique. The obtained results show that the porosity of the sintered starch processed 25 wt.% ZrP2O7 bonded Si3N4 porous ceramics is 36-62.3%. All the samples exhibit surprisingly low linear shrinkage. The pores are formed by the continuous reaction of ZrP2O7 at ~ 250 °C and burnout of starch at ~ 550 °C, during which a large amount of pores with pore sizes of less than 0.5 μm and ~ 10 μm are formed.  相似文献   

14.
Fine MoSi2 powders containing a small amount of Mo5Si3 have been prepared by self-propagating high-temperature synthesis (SHS), followed by spark plasma sintering (SPS) for 10 min at 1200-1500°C and 30 MPa. Dense MoSi2 materials, in which the grain size is ∼7.5 μm, have been fabricated at 1300°C. They exhibit excellent mechanical properties: Vicker’s hardness Hv (10.6 GPa), fracture toughness KIC (4.5 MPa m1/2), and bending strength σb (560 MPa). The strength of 325 MPa can be retained up to 1000°C.  相似文献   

15.
A novel porous Ti–6Al–4V with an open cell structure was fabricated by powder metallurgy process with the addition of TiH2 as the pore forming and active agent. Control of porosity of porous Ti alloy made it possible to obtain the porous Ti with the Young's modulus value of 5.8–9.5 GPa, which was similar to that of human cancellous bone. This kind of porous Ti alloy with good biomechanical properties is potential to alleviate the problem of mechanical mismatch between the bone and the Ti implant. The porous Ti alloy prepared by the addition of TiH2 as foaming agent had a uniform distribution of pores with pore size of 90–190 μm and porosity of 43–59%. In order to improve the biological properties, the duplex titania/apatite coatings were applied onto the surface of porous Ti alloy. The titania coating was deposited by chemical treatment and the apatite coating was subsequently applied by immersing the samples in a simulated body fluid. Results showed that a homogeneous nanocrystallite titania coating with a thickness of 0.8 μm was formed on the surface of the Ti alloy after chemical treatment. The carbonate-containing apatite coating with a thickness of 1 μm was deposited on the surface of titania coating after immersion in simulated body fluid for 7 days. The nucleation of the carbonate-containing apatite can be induced from the electrostatic interaction between the OH-containing groups on the surface of titania coating and the calcium and phosphate ions in the metastable simulated body fluid on those specific superficial sites. The growth kinetics of the coatings was also discussed. Cell culture test showed the well stretched and proliferated cells on the surface of the sample, indicating the good biocompatibility of porous Ti alloy.  相似文献   

16.
Titanium (Ti) and its alloys continue to be utilized extensively for skeletal repair and dental implants. Most metallic implant materials including pure Ti and Ti alloys used today are in their solid forms and are often much stiffer than human bone. However, the elastic modulus of Ti and Ti alloys can be reduced through the introduction of a porous structure, which may also provide new bone tissue integration and vascularization abilities. In the present study, porous Ti–7.5Mo alloy scaffolds made from ball-milled alloy particles and sintered at 1100 °C for 10, 15 and 20 h respectively were successfully prepared through a space-holder sintering method. In the sintered Ti–7.5Mo, no obvious diffraction peaks of elemental Mo remained after the sintering, and a duplex α + β microstructure was confirmed from the XRD pattern. The samples made from BM15 (the alloy particles ball-milled for 15 h) had higher relative density, compressive strength and elastic modulus performance than those from BM3 and BM30 (the alloy particles ball-milled for 3 and 30 h, respectively) when they were sintered under the same conditions. Moreover, the longer sintering time lead to the higher relative density and the greater compressive strength and modulus of the sample. In this work, the strength and modulus of the sintered porous Ti–7.5Mo conforms to the basic mechanical property requirement of cancellous bones.  相似文献   

17.
In this study, porous Ti–10Mo alloy was prepared from a mixture of titanium, molybdenum and epoxy resin powders by selective laser sintering preforming, debinding and sintering at 1200 °C under a pure argon atmosphere. The influence of sintering process on the porous, microstructural and mechanical properties of the porous alloy was discussed. The results indicate that the pore characteristic parameters and mechanical properties mainly depend on the holding time at 1200 °C, except that the maximum strain keeps at about 45%. The matrix microstructure is dominated by α phase with a small quantity of β phase at room temperature. As the holding time lengthens from 2 to 6 h, the average pore size and the porosity decrease from 180 to 50 μm and from 70 to 40%, respectively. Meanwhile, the Young's modulus and the compressive yield strength increase in the ranges of 10–20 GPa and 180–260 MPa, respectively. Both the porous structure and the mechanical properties of the porous Ti–10Mo alloy can be adjusted to match with those of natural bone.  相似文献   

18.
The sinterability of manganese oxide (MnO2) doped hydroxyapatite (HA) ranging from 0.05 to 1 wt% was investigated. Green samples were prepared and sintered in air at temperatures ranging from 1000 to 1400 °C. Sintered bodies were characterized to determine the phase stability, grain size, bulk density, hardness, fracture toughness and Young's modulus. XRD analysis revealed that the HA phase stability was not disrupted throughout the sintering regime employed. In general, samples containing less than 0.5 wt% MnO2 and when sintered at lower temperatures exhibited higher mechanical properties than the undoped HA. The study revealed that all the MnO2-doped HA achieved >99% relative density when sintered at 1100-1250 °C as compared to the undoped HA which could only attained highest value of 98.9% at 1150 °C. The addition of 0.05 wt% MnO2 was found to be most beneficial as the samples exhibited the highest hardness of 7.58 GPa and fracture toughness of 1.65 MPam1/2 as compared to 5.72 GPa and 1.22 MPam1/2 for the undoped HA when sintered at 1000 °C. Additionally, it was found that the MnO2-doped samples attained E values above 110 GPa when sintered at temperature as low as 1000 °C if compared to 1050 °C for the undoped HA.  相似文献   

19.
Porous titanium and titanium alloys are promising scaffolds for bone tissue engineering, since they have the potential to provide new bone tissue ingrowth abilities and low elastic modulus to match that of natural bone. In the present study, porous Ti–7.5Mo alloy scaffolds with various porosities from 30 to 75 % were successfully prepared through a space-holder sintering method. The yield strength and elastic modulus of a Ti–7.5Mo scaffold with a porosity of 50 % are 127 MPa and 4.2 GPa, respectively, being relatively comparable to the reported mechanical properties of natural bone. In addition, the porous Ti–7.5Mo alloy exhibited improved apatite-forming abilities after pretreatment (with NaOH or NaOH + water) and subsequent immersion in simulated body fluid (SBF) at 37 °C. After soaking in an SBF solution for 21 days, a dense apatite layer covered the inner and outer surfaces of the pretreated porous Ti–7.5Mo substrates, thereby providing favorable bioactive conditions for bone bonding and growth. The preliminary cell culturing result revealed that the porous Ti–7.5Mo alloy supported cell attachment.  相似文献   

20.
The unidirectional boron nitride fibre reinforced boron nitride matrix (BNf/BN) composites were prepared via the precursor infiltration and pyrolysis (PIP) route, and the structure, composition, mechanical and dielectric properties were studied. The composites have a high content and fine crystallinity of BN. The density is 1.60 g cm−3 with a low open porosity of 4.66%. The composites display good mechanical properties with the average flexural strength, elastic modulus and fracture toughness being 53.8 MPa, 20.8 GPa and 6.88 MPa m1/2, respectively. Lots of long fibres pull-out from the fracture surface, suggesting a good fibre/matrix interface. As temperature increases, both of the flexural strength and elastic modulus exhibit a decreasing trend, with the lowest values being 36.2 MPa and 8.6 GPa at 1000 °C, respectively. The desirable residual ratios of the flexural strength and elastic modulus at 1000 °C are 67.3% and 41.3%, respectively. The composites have excellent dielectric properties, with the average dielectric constant and loss tangent being 3.07 and 0.0044 at 2-18 GHz, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号