首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synergistic effect of organo-modified montmorillonite (Nanomer I28E and Cloisite 20A) and metal hydroxides (magnesium hydroxide MH and alumina trihydrate ATH) as flame retardants in LDPE/EVA nanocomposites compatibilized with amino alcohol grafted polyethylene (PEgDMAE) was studied. Morphological characterization of nanocomposites was carried out by means of X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM). Flame-retardant properties of nanocomposites were evaluated by the UL-94 horizontal burning and cone calorimeter tests and limiting oxygen index (LOI). Thermal degradation behavior was analyzed with a Fourier transform infrared coupled with the thermogravimetric analyzer (TG-FTIR). The XRD analysis showed a displacement of the d001 plane characteristic peak of clay to lower angles, which indicates an intercalated–exfoliated morphology. From STEM images it was observed a good dispersion of flame retardants (MH and ATH) throughout the polymer matrix which was reflected in flame-retardant properties. TG-FTIR showed a better thermal stability of nanocomposites and the gases evolved during combustion showed an important reduction. Based on thermal stability and thermal degradation results, the flame-retardant mechanism of LDPE/PEgDMAE/EVA/Clay/MH nanocomposites was proposed.  相似文献   

2.
A study on the dynamic mechanical properties of polypropylene copolymer/ethylene–vinyl acetate/organoclay (PP-EP/EVA/C20A) nanocomposites is presented. Nanocomposites were obtained by melt blending. Morphology consisting of intercalated–exfoliated clay nanolayers preferentially located within the EVA phase was observed by transmission electron microscopy (TEM) and wide angle X-ray diffraction (WAXD). Polar groups of vinyl acetate in the EVA facilitated the polymer–clay interactions. Changes in the glass transition temperature (Tg) were correlated with changes in the clay intercalation–exfoliation levels. The highly reinforced with intercalated–exfoliated clay layers EVA phase was considered as the origin of the improvement on mechanical properties of the ternary nanocomposites and is associated with the increase on viscosity, heat deflection temperature (HDT), and storage modulus.  相似文献   

3.
The potential to improve the mechanical, thermal, and optical properties of poly(methyl methacrylate) (PMMA)/clay nanocomposites prepared with clay containing an organic modifier was investigated. Pristine sodium montmorillonite clay was modified using cocoamphodipropionate, which absorbs UVB in the 280–320 nm range, via ion exchange to enhance the compatibility between the clay platelets and the methyl methacrylate polymer matrix. PMMA/clay nanocomposites were synthesized via in situ free-radical polymerization. Three types of clay with various cation-exchange capacities (CEC) were used as inorganic layered materials in these organic–inorganic hybrid nanocomposites: CL42, CL120, and CL88 with CEC values of 116, 168, and 200 meq/100 g of clay, respectively. We characterized the effects of the organoclay dispersion on UV resistance, effectiveness as an O2 gas barrier, thermal stability, and mechanical properties of PMMA/clay nanocomposites. Gas permeability analysis demonstrated the excellent gas barrier properties of the nanocomposites, consistent with the intercalated or exfoliated morphologies observed. The optical properties were assessed using UV–Visible spectroscopy, which revealed that these materials have good optical clarity, UV resistance, and scratch resistance. The effect of the dispersion capability of organoclay on the thermal properties of PMMA/clay nanocomposites was investigated by thermogravimetric analysis and differential scanning calorimetry; these analyses revealed excellent thermal stability of some of the modified clay nanocomposites.  相似文献   

4.
In this work, the effects of montmorillonite (MMT) dispersion and electron beam irradiation on intercalation and flammability-thermal behaviours of alumina trihydrate (ATH) added low density polyethylene and ethylene vinyl acetate (LDPE–EVA) blends were investigated. MMT and ATH added LDPE–EVA blends were compounded using Brabender mixer and compression moulded into sheets. The samples sheets were electron beam irradiated in the dosage range of 0 to 250 kGy. The dispersion and intercalation of nano-MMT in LDPE–EVA matrix were investigated through X-ray diffraction (XRD) analysis. The d-spacing measurements revealed that the addition of nano-MMT has effectively intercalated into polymer matrix and this has enhanced the compatibility of ATH particles and LDPE–EVA matrix. Limiting oxygen index test (LOI) revealed that the incorporation of MMT into ATH added LDPE–EVA blends as improved the flame retardancy up to 26.5 LOI%. Besides, the application of electron beam irradiation were also improved the flame retardancy of the blends by increasing the LOI% for about 2% compared to non-irradiated samples. The application of irradiation dosage up to 250 kGy has rapidly improved the thermal stability of blends by delaying decomposition temperature and also promoting formation of char. The increasing of MMT loading level and irradiation dosage has effectively enhanced tensile strength and Young’s modulus by intercalating polymer matrix into interlayer galleries of MMT particles. Beside, the formation of crosslinking networks in polymer matrix also could further enhance the tensile strength and Young’s modulus. The intercalation effect of MMT particles and formation of crosslinking networks in polymer matrix could improve the thermal and mechanical properties. Consequently, this study has demonstrated that addition of MMT and electron beam irradiation into ATH added LDPE–EVA blends could produce better flammability, thermal and physical properties of ATH added LDPE–EVA blends.  相似文献   

5.
With the aim of develop new materials for active food packaging, composites of low-density polyethylene (LDPE) with chitosan (CS) or chitosan sodium montmorillonite clay nanocomposites (CSnano), with or without Irganox 1076 commercial synthetic antioxidant or vitamin E (VE) as natural antioxidant were prepared by melt processing. The obtained materials have been characterized by processing behavior, mechanical and thermal properties, positive groups determination, atomic force microscopy and standard tests to assess antimicrobial and antioxidant activities. The compositions assuring insignificant decrease in mechanical and thermal properties were selected as LDPE/3CSnano/VE and LDPE/6CSnano/VE. It has been shown the chitosan imparts antimicrobial properties to LDPE films while the vitamin E increased the oxidation induction period, especially for materials containing chitosan nanocomposites. The incorporation of both chitosan nanocomposites and vitamin E in polyethylene gave films with good antimicrobial and thermal properties because of significant increase of charge surface and important changes in surface topology and antimicrobial activity because of a synergistic effect. The nanocomposites cannot only passively protect the food against environmental factors, but they may enhance shelf life of food products.  相似文献   

6.
Semi-solid forming processes such as thermoforming and injection blow moulding are used to make much of today’s packaging. As for most packaging there is a drive to reduce product weight and improve properties such as barrier performance. Polymer nanocomposites offer the possibility of increased modulus (and hence potential product light weighting) as well as improved barrier properties and are the subject of much research attention. In this particular study, polypropylene–clay nanocomposite sheets produced via biaxial deformation are investigated and the structure of the nanocomposites is quantitatively determined in order to gain a better understanding of the influence of the composite structure on mechanical properties. Compression moulded sheets of polypropylene and polypropylene/Cloisite 15A nanocomposite (5 wt.%) were biaxially stretched to different stretching ratios, and then the structure of the nanocomposite was examined using XRD and TEM techniques. Different stretching ratios produced different degrees of exfoliation and orientation of the clay tactoids. The sheet properties were then investigated using DSC, DMTA, and tensile tests .It was found that regardless of the degree of exfoliation or orientation, the addition of clay has no effect on percentage crystallinity or melting temperature, but it has an effect on the crystallization temperature and on the crystal size distribution. DMTA and tensile tests show that both the degree of exfoliation and the degree of orientation positively correlate with the dynamic mechanical properties and the tensile properties of the sheet.  相似文献   

7.
Polymer nanocomposites offer the potential of enhanced properties such as increased modulus and barrier properties to the end user. Much work has been carried out on the effects of extrusion conditions on melt processed nanocomposites but very little research has been conducted on the use of polymer nanocomposites in semi-solid forming processes such as thermoforming and injection blow molding. These processes are used to make much of today’s packaging, and any improvements in performance such as possible lightweighting due to increased modulus would bring significant benefits both economically and environmentally. The work described here looks at the biaxial deformation of polypropylene–clay nanocomposites under industrial forming conditions in order to determine if the presence of clay affects processability, structure and mechanical properties of the stretched material. Melt compounded polypropylene/clay composites in sheet form were biaxially stretched at a variety of processing conditions to examine the effect of high temperature, high strain and high strain rate processing on sheet structure and properties.  相似文献   

8.
This study reports the preparation and physical properties of biodegradable nanocomposites fabricated using poly(l-lactide) (PLLA) and magnesium/aluminum layered double hydroxide (MgAl-LDH). The MgAl-LDH with molar ratio of Mg/Al = 2 were synthesized by the co-precipitation method. In order to improve the chemical compatibility between PLLA and LDH, the surface of LDH was organically-modified by polylactide with carboxyl end group (PLA–COOH) using ion-exchange process. Then, the PLLA/LDH nanocomposites were prepared by solution intercalation of PLLA into the galleries of PLA–COOH modified LDH (P-LDH) in tetrahydrofuran solution. Both X-ray diffraction data and Transmission electron microscopy images of PLLA/P-LDH nanocomposites indicate that the P-LDHs are randomly dispersed and exfoliated into the PLLA matrix. Mechanical properties of the fabricated 1.2 wt.% PLLA/P-LDH nanocomposites show significant enhancements in the storage modulus when compared to that of neat PLLA. Adding more P-LDH into PLLA matrix induced a decrease in the storage modulus of PLLA/P-LDH nanocomposites, probably due to the excessive content of PLA–COOH moleculars with low mechanical properties. The thermal stability and degradation activation energies of the PLLA and PLLA/P-LDH nanocomposites can also be discussed.  相似文献   

9.
Polyamide 6 nanocomposites based on sepiolite needle-like clay were prepared via melt extrusion. Sepiolite was organomodified with trimethyl hydrogenated tallow quaternary ammonium (3MTH) by using different amounts of modifier respect to the sepiolite. The effect of modifier/sepiolite ratio on the final nanocomposite properties and the catalytic effect of the sepiolite on the polymeric matrix were evaluated. The presence of organomodified sepiolite on the polymer matrix favoured the crystallinity of the PA 6. The catalytic effect of the sepiolite was reduced as the modifier amount increased. The elastic modulus and Heat Deflection Temperature (HDT) in PA 6/organosepiolite nanocomposites increased ∼2.5 times respect to the neat PA 6 matrix. The higher the modification grade the better the dispersion and orientation of needle-like sepiolite clay were attained. This effect supported the reinforcement efficiency of organosepiolites with high modifier content.  相似文献   

10.
目的研究硅藻土添加量对HDPE/LDPE基抗氧化活性膜的拉伸强度、阻氧阻湿性能、热封性能等物理性能及抗氧化剂在活性膜中释放性能的影响。方法以硅藻土为活性膜内层的无机填料,乙烯-醋酸乙烯共聚物(EVA)为无机填料增容剂,槲皮素为抗氧化剂,采用共挤流延法制备外层为HDPE、内层为LDPE的HDPE/LDPE基多层抗氧化活性膜,通过改变内层膜中硅藻土的添加量调整槲皮素从活性膜中的释放。结果添加硅藻土的质量分数为0,1%,2%,3%,4%时,槲皮素扩散系数D(cm2/s)分别为5.91×10-13,2.30×10-11,1.59×10-11,2.44×10-11,3.22×10-11。随着硅藻土的增加,活性膜的热封强度逐渐减小,拉伸强度先增加后减小,透氧系数、透湿系数均呈先减小后增加的趋势。结论硅藻土的添加对活性膜的拉伸性能、阻氧阻湿性能影响较小,显著削弱了活性膜的热封性能,使达到平衡时槲皮素的最终释放量增加;硅藻土的添加及添加量的改变能有效调整槲皮素的释放。  相似文献   

11.
The objective of this study was to investigate the effects of two compatibilizers, namely maleated polypropylene (PP-g-MA) and maleic anhydride grafted poly (ethylene-co-octene) (EOC-g-MA), on the morphology and thus properties of ternary nanocomposites of polypropylene (PP)/ethylene–octene copolymer (EOC)/clay nanocomposite. In this regard the nanocomposites and their neat polymer blend counterparts were processed twice using a twin screw extruder. X-ray diffraction, transmission electron microscopy, Energy dispersive X-ray spectroscopy, and scanning electron microscopy were utilized to characterize nanostructure and microstructure besides mechanical and rheological behaviors of the nanocomposites. Clay with intercalated structure was observed in EOC phase of the PP/EOC/clay nanocomposite. Better dispersion state of the intercalated clay in EOC phase was observed by adding EOC-g-MA as a compatibilizer. On the other hand, adding PP-g-MA resulted in migration of the intercalated clay from the EOC to the PP and to the interface regions. It was also demonstrated that the elastomer particles became smaller in size where clay was present. The finest and the most uniform morphology was found in the PP/EOC/clay nanocomposite. In addition, the rheological results illustrated a higher complex viscosity and storage modulus for PP/EOC/PP-g-MA/clay nanocomposite in which clay particles were present in the matrix. Mechanical assessments showed improvements in the toughness of the nanocomposites with respect to their neat blends, without significant change in stiffness and tensile strength values. These results highlight a toughening role of clay in the polymer blend nanocomposites studied.  相似文献   

12.
Thermoplastic starch/poly(vinyl alcohol) (PVOH)/clay nanocomposites, exhibiting the intercalated and exfoliated structures, were prepared via melt extrusion method. The effects of clay cation, water, PVOH and clay contents on clay intercalation and mechanical properties of nanocomposites were investigated. The experiments were carried out according to the Taguchi experimental design method. Montmorillonite (MMT) with three types of cation or modifier (Na+, alkyl ammonium ion, and citric acid) was examined. The prepared nanocomposites with modified montmorillonite indicated a mechanical improvement in the properties in comparison with pristine MMT. It was also observed that increases in tensile strength and modulus would be attained for nanocomposite samples with 10%, 5% and 4% (by weight) of water, PVOH and clay loading, respectively. The clay intercalation was examined by X-ray diffraction (XRD) patterns. The chemical structure and morphology of the optimum sample was also probed by FTIR spectroscopy and transmission electron microscopy (TEM).  相似文献   

13.
This work dealt with the morphology and permeability properties of polypropylene/organoclay nanocomposites prepared using an acrylic acid grafted polypropylene (PP-g-AA) as compatibilizing agent. Two PP-g-AA containing the same acrylic acid content (6 wt.%) and having different molar masses were tested. The o-MMT content was 0, 1 or 5 wt.% and the PP-g-AA/o–MMT mass ratio was 0/1, 1/1, 2/1 or 5/1. Results of wide angle X-ray scattering (WAXS) and transmission electron microscopy (TEM) showed that without the PP-g-AA, the o-MMT was dispersed in the PP/o-MMT in a micrometer scale, similar to a conventional microcomposite. With the PP-g-AA, the o-MMT was much better dispersed and its interlayers were intercalated and partly exfoliated by the polymer chains. CO2 permeability values decreased for all samples with the incorporation of the organoclay. The compatibilized samples showed a more significant reduction in CO2 permeability, up to 50% when compared to the neat PP. In general, the PP-g-AA acted satisfactorily in compatibilizing PP/organoclay nanocomposites. Moreover, samples prepared with the compatibilizer/organoclay ratio of 5/1 had better barrier properties.  相似文献   

14.
通过熔体插层制备了乙烯-乙酸乙烯酯共聚物(EVA)/粘土纳米复合材料。采用FT-IR、XRD、TG分析和力学性能测试研究了有机改性粘土和EVA/粘土复合材料的结构与性能。实验结果表明,通过离子交换反应,可使长链十八胺阳离子嵌入粘土片层间,增大了粘土的片层间距;对于EVA/有机化粘土体系,通过熔体插层可使EVA分子链插层于粘土片层中,使粘土片层被进一步撑开;EVA/粘土纳米复合材料具有较好的力学性能。  相似文献   

15.
Compatibilized and non-compatibilized blends of polypropylene (PP) and poly(lactic acid) (PLA) with various compositions containing nanoclay particles were prepared by one step melt compounding in a twin screw extruder. Two nanocomposite systems with different matrices i.e. PP-rich (75/25 composition) containing Cloisite 15A and PLA-rich (25/75 composition) containing Cloisite 30B were selected for investigation of effect of nanoclays and n-butyl acrylate glycidyl methacrylate ethylene terpolymers (PTW) as compatibilizer on mechanical properties of PP/PLA/clay nanocomposites. Tensile and impact properties of the nanocomposite systems were investigated and correlated with their microstructures. Tensile modulus and strength of the blends were increased while elongation at break decreased by increasing PLA content. There was an irregular relationship between impact strength of the blends and PLA content. Several proposed models for blends and nanocomposites were used for prediction of tensile modulus of the samples. Most of the proposed models for blends could predict the tensile modulus of the blends successfully at low content of PLA. Another notable point was that most of the micromechanical models for nanocomposites fitted well to experimental values at low content of the clays and showed deviations at high clay loadings.  相似文献   

16.
Mechanical and thermal properties of non-crimp glass fiber reinforced clay/epoxy nanocomposites were investigated. Clay/epoxy nanocomposite systems were prepared to use as the matrix material for composite laminates. X-ray diffraction results obtained from natural and modified clays indicated that intergallery spacing of the layered clay increases with surface treatment. Tensile tests indicated that clay loading has minor effect on the tensile properties. Flexural properties of laminates were improved by clay addition due to the improved interface between glass fibers and epoxy. Differential scanning calorimetry (DSC) results showed that the modified clay particles affected the glass transition temperatures (Tg) of the nanocomposites. Incorporation of surface treated clay particles increased the dynamic mechanical properties of nanocomposite laminates. It was found that the flame resistance of composites was improved significantly by clay addition into the epoxy matrix.  相似文献   

17.
Polylactide-layered silicate nanocomposites with and without a chain extender were prepared by melt mixing using a twin-screw extruder. An organo-modified clay, Cloisite® 30B, and a chain extender Joncryl®-ADR 4368F were employed in this study. The effect of the chain extender and processing conditions on the properties of the PLA-clay nanocomposites were investigated for different strategies of mixing. The resulting nanocomposites were characterized by X-ray diffraction (XRD), while their morphology was observed by SEM and TEM. The incorporation of the chain extender could enhance the degree of clay dispersion provided that it is judiciously added to the nanocomposite. The corresponding results revealed that the Joncryl-based nanocomposites, where nanoclay platelets were well-dispersed, exhibited a significantly reduced permeability as compared to others. The mechanical properties of the neat PLA, the PLA and Joncryl-based nanocomposites were also examined. The increased molecular weight in Joncryl-based nanocomposites caused a significant increase in the modulus, drawability and toughness of the samples.  相似文献   

18.
Polyethylene/organo-montmorillonite clay (org-MMT) nanocomposites were prepared utilizing PP-g-MA as a compatibilizer by melt intercalation method. In order to increase the miscibility of polyethylene (PE) with nanoparticle surface at firs, a primary masterbatch consist of compatibilizer and org-MMT was prepared then, this compound was melt intercalated with PE to synthesis the PE/org-MMT nanocomposites. In this study, the presence of commercial low density polyethylene in Nanocomposites structure and also the effect of process parameters such as: amount of nanoparticles, mixing rate and mixing time on nanocomposite structure and properties have been investigated. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results showed that the interlayer distance of nanoparticle layers increased and a partially intercalated structure was prepared by melt intercalation method. Interaction between polyethylene chains and nanoparticle layers could be improved if the control of above parameters causes to penetrate the chains into nanoclay layers; by an optimization, this effect could improve the physical and mechanical properties. The DSC data revealed that melting temperature has slowly increased and crystalinity has lightly decreased. Consequently we can claim the thermal properties of LDPE/clay nanocomposite did not considerably change with clay content. A rise in the mechanical properties such as yield stress and modulus was observed by tension test; by addition of 5% clay content the tensile strength increased about 7%, the tensile modulus enhanced about 60% and the yield stress increased about 16% in comparison with the pure LDPE.  相似文献   

19.
The aim of this study was to evaluate the effect of the addition of two types of nanoparticles, organomodified montmorillonite Cloisite® 30B (C-30B), and a tubular like clay, halloysite (HNT), on the morphology and thermal and mechanical properties of poly(hydroxybutyrate-co-hydroxyvalerate) – PHBV nanocomposites. TEM and WAXD results showed a combination of a few tactoids and a partially exfoliated structure for PHBV/C-30B nanocomposites and a good dispersion of HNT in the PHBV matrix. DSC analysis indicated a lower nucleation density with the addition of nanoparticles. Furthermore, the presence of C-30B led to the formation of double melting peaks, related to different crystalline phases. However, a higher melting temperature was obtained for PHBV/HNT nanocomposites. A general increase in the Young’s modulus was observed. However, for PHBV/C-30B nanocomposites, this enhancement was at the expense of the strain at break and impact strength, probably due to the degradation of the polymer during processing.  相似文献   

20.
Two organic modified clays (Cloisite®30B (CL30B) and PCL/Cloisite®30B masterbatch (MB30B)) were used to improve the mechanical properties of polycarbonate (PC)/poly (styrene-co-acrylonitrile) (SAN) blends. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) measurements of the melt blended nanocomposites revealed that partially exfoliated and partially degraded structure was obtained and the clay platelets were located mostly in the SAN phase and at the two-phase boundary. Dispersion of the clay platelets is better when MB30B were used. The mechanical properties of the clays filled nanocomposites vary accordingly and when MB30B is used better mechanical properties can be achieved. Tensile strength increases 41% at maximum as the CL30B loading is 5 wt.%, while elongation at break decreases dramatically. Impact strength can be improved up to 430% compared to the pure blend when 1 wt.% MB30B was used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号