首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an experimental study on the restrained shrinkage cracking of the lightweight concretes made with cold-bonded fly ash lightweight aggregates. Two types of fly ash having different physical and chemical properties were utilized in the production of lightweight aggregates with different strengths. Afterwards, lower strength aggregates were also surface treated by water glass and cement–silica fume slurry to improve physical and mechanical properties of the particles. Therefore, a total of eight concrete mixtures were designed and cast at 0.35 and 0.55 water–cement ratios using four types of lightweight coarse aggregates differing in their surface texture, density, water absorption, and strength. Ring type specimens were used for restrained shrinkage cracking test. Free shrinkage, creep, weight loss, compressive and splitting tensile strengths, and modulus of elasticity of the concretes were also investigated. Results indicated that improvement in the lightweight aggregate properties extended the cracking time of the concretes resulting in finer cracks associated with the lower free shrinkage. Moreover, there was a marked increase in the compressive and splitting tensile strengths, and the modulus of elasticity.  相似文献   

2.
An experimental program was carried out to obtain the compressive strengths and elastic moduli of cold-bonded pelletized lightweight aggregate concretes. Three types of aggregates were made with different fly ash contents. Experimental data were analyzed statistically. Test results of multivariate analysis of variance (MANOVA) with 95% confidence level (α=0.05) show that the properties of lightweight aggregates and the water/binder ratio are two significant factors affecting the compressive strength and elastic modulus of concrete.  相似文献   

3.
Pelletization is a worldwide process used in producing artificial aggregates although its usage is not common in Turkey. In this study, lightweight aggregates (LWAs) were manufactured through cold-bonding pelletization of ground granulated blast furnace slag (G) and two types of fly ash with different finenesses (Fly ash A and B). Ordinary Portland cement (PC) was used as a binder at varying amounts from 5 to 20 % by weight. A total of 20 cold-bonded lightweight aggregates were produced at room temperature with different combinations of PC, FA and/or G. The hardened aggregates were tested for specific gravity, water absorption, and crushing strength. Thereafter, lightweight concretes (LWCs) were produced with water to cement ratio of 0.50 and a cement content of 400?kg/m3 by using such lightweight aggregates. The hardened concretes were tested for compressive strength at 28 and 56?days to explore the effect of aggregate types on the compressive strength development. Test results revealed that the amount of cement content had a significant effect on the strength of LWAs which in turn governed the variation in compressive strength of the LWCs. The highest 28 and 56-day compressive strengths of 43 and 51?MPa, respectively were achieved for the concretes including LWAs produced from the blend of 40 % slag, 40 % FA-A and 20 % PC.  相似文献   

4.
Sustained research and development work on the utilization of fly ash for various productive uses have been carried out in the past. In the construction industry, major attention has been devoted to the use of fly ash in concrete as a cement replacement. The production of artificial lightweight coarse aggregate using fly ash has potential for its large-scale utilization in the construction industry and this is an area that merits attention in many parts of the world, bearing in mind the rapid dwindling of sources of natural aggregates. As only limited details on manufacture and parameters influencing properties of sintered fly ash aggregates have been reported in the literature, a systematic study was undertaken. In this paper, the relative performance of three binders, viz., cement, lime and bentonite, on the properties of sintered fly ash aggregate is reported. The salient observations are (i) the characterization studies on sintered fly ash aggregates show that the properties of aggregates depend on the type of binder and its dosage, (ii) the significant improvement in strength and reduction in water absorption of sintered fly ash aggregate is observed when bentonite is added with fly ash, (iii) the binders used did not alter the chemical composition, while they influence the microstructure of the aggregate, which results in enhancement in the properties of aggregates.  相似文献   

5.
This study reports the finding of an experimental study carried out on the durability related properties of the lightweight concretes (LWCs) including either cold bonded (CB) or sintered (S) fly ash aggregates. CB aggregate was produced with cold bonding pelletization of class F fly ash (FA) and Portland cement (PC) while S aggregate was produced by sintering the fresh aggregate pellets manufactured from FA and bentonite (BN). Two concrete series with water-to-binder (w/b) ratios of 0.35 and 0.55 were designed. Moreover, silica fume (SF) with 10% replacement level was also utilized for the purpose of comparing the performances of LWCs with and without ultrafine SF. The durability properties of concretes composed of CB and S aggregates were evaluated in terms of water sorptivity, rapid chloride ion permeability, gas permeability, and accelerated corrosion testing after 28 days of water curing period. The compressive strength test was also applied to observe the strength level at the same age. The results revealed that S aggregate containing LWCs had relatively better performance than LWCs with CB aggregates. Moreover, the incorporation of SF provided further enhancement in permeability and corrosion resistance of the concretes.  相似文献   

6.
This paper discusses the development of empirical models for workability and compressive strength of cold-bonded fly ash aggregate concrete in terms of mixture proportioning variables such as cement content, water content and volume fraction of cold-bonded aggregate through statistically designed experiments based on Response Surface Methodology. Factor level of cement is taken from 250 to 450 kg/m3 to introduce weak as well as strong matrix phase in the concrete. Apart from water content, workability of concrete is highly influenced by main and interaction effect of volume fraction of cold-bonded aggregate in the composition. Response surface indicate that increase in cement content causes to change the predominant failure mode from mortar failure to aggregate fracture and concrete strength decreases with increase in volume fraction of aggregate at higher cement contents. The models developed have been found useful in arriving typical relationship to establish a mixture proportioning methodology for cold-bonded fly ash aggregate concrete.  相似文献   

7.
The effect of polypropylene and steel fibers on high strength lightweight aggregate concrete is investigated. Sintered fly ash aggregates were used in the lightweight concrete; the fines were partially replaced by fly ash. The effects on compressive strength, indirect tensile strength, modulus of rupture, modulus of elasticity, stress–strain relationship and compression toughness are reported. Compared to plain sintered fly ash lightweight aggregate concrete, polypropylene fiber addition at 0.56% by volume of the concrete, caused a 90% increase in the indirect tensile strength and a 20% increase in the modulus of rupture. Polypropylene fiber addition did not significantly affect the other mechanical properties that were investigated. Steel fibers at 1.7% by volume of the concrete caused an increase in the indirect tensile strength by about 118% and an increase in the modulus of rupture by about 80%. Steel fiber reinforcement also caused a small decrease in the modulus of elasticity and changed the shape of the stress–strain relationship to become more curvilinear. A large increase in the compression toughness was recorded. This indicated a significant gain in ductility when steel fiber reinforcement is used.  相似文献   

8.
The aim of this study is to investigate the effect of polystyrene aggregate size on strength and moisture migration characteristics of lightweight concrete. The present study covers the use of expanded polystyrene (EPS) and un-expanded polystyrene (UEPS) beads as lightweight aggregate in concretes that contain fly ash as a supplementary cementitious material. Lightweight concrete with wide range of concrete densities (1000–1900 kg/m3) were studied mainly for compressive strength, split tensile strength, moisture migration and absorption. The results indicate that for comparable aggregate size and concrete density, concrete with UEPS aggregate exhibited 70% higher compressive strength than EPS aggregate. EPS aggregate concrete with small EPS aggregates showed higher compressive strength and the increase in compressive strength was more pronounced in low density concrete when compared with high density concrete. The UEPS aggregate concrete exhibited brittle failure similar to normal weight concrete (NWC), whereas, gradual failure was observed in EPS concrete. Moreover, the moisture migration and absorption results indicate that the EPS concrete containing bigger size and higher volumes of EPS aggregate show higher moisture migration and absorption.  相似文献   

9.
In this study, artificial coarse aggregates are prepared by a cold bonding technique. The waste materials, namely, fly ash and quarry dust, are used for the preparation of the cold bonded artificial aggregate. Portland cement is used as the binder material. The independent variables considered for the preparation of the artificial aggregate are cement and fly ash contents. The properties of the artificial aggregate are determined and regression models are proposed for predicting these properties. The strength and workability of concrete containing artificial aggregate is determined. The slump loss of concrete containing artificial aggregate is found to be gradual. The concretes with strengths of up to 30 MPa is prepared using artificial aggregates. The study promotes the use of waste material and supports sustainable construction practices.  相似文献   

10.
One of the major problems in lightweight aggregate concrete production is the high water absorption characteristic of the aggregates due to their porous structure. This problem is usually overcome by prewetting the lightweight aggregates or increasing the amount of mixing water. Since aggregate prewetting methods significantly affect fresh and hardened lightweight concrete properties, it is important to take this into account before the concrete production process.This study is focused on the effects of three prewetting methods on some fresh and hardened properties of pumice lightweight concrete. Pre-soaking, water-soaking and vacuum-soaking methods were applied to pumice lightweight aggregate prior to mixing. Test results showed that fresh and hardened properties of concretes with vacuum-soaked and water-soaked lightweight aggregate were significantly better than that of concretes with pre-soaked lightweight aggregate. Vacuum-soaking and water-soaking of pumice aggregate improved workability, compressive strength and drying shrinkage of pumice lightweight concrete.  相似文献   

11.
Sintering of MSW fly ash for reuse as a concrete aggregate   总被引:14,自引:0,他引:14  
The sintering process of municipal solid waste (MSW) fly ash was investigated in order to manufacture sintered products for reuse as concrete aggregates.Four types of fly ash resulting from different Italian MSW incineration plants were tested in this study. A modification of the chemical composition of MSW fly ash--through a preliminary four-stage washing treatment of this material with water--was attempted to improve the chemical and mechanical characteristics of sintered products.The sintering treatment of untreated or washed fly ash was performed on cylindrical compact specimens (15 mm in diameter and 20mm in height) at different compact pressures, sintering temperatures and times.The sintering process of untreated MSW fly ashes proved to be ineffective for manufacturing sintered products for reuse as a construction material, because of the adverse chemical characteristics of these fly ashes in terms of sulfate, chloride, and vitrifying oxide contents.A preliminary washing treatment of MSW fly ash with water greatly improved the chemical and mechanical characteristics of sintered products and, for all the types of fly ash tested, the sintered products satisfied the Italian requirements for normal weight aggregates for use in concretes having a specified strength not greater than 12 and 15N/mm(2), when measured on cylindrical and cubic specimens, respectively.A compact pressure of 28 N/mm(2), a sintering temperature of 1140 degrees C, and a sintering time of 60 min were the best operating conditions for manufacturing sintered products of washed MSW fly ash.  相似文献   

12.
The optimization of properties of lightweight fly ash aggregates for suitability in high-strength lightweight fly ash concrete production was investigated using response surface methodology (RSM). Design-Expert software was used to establish the design matrix and to analyze the experimental data. The relationships between the sintering parameters (temperature, binder content and binder type) and experimentally obtained three responses (specific gravity, water absorption and crushing strength) were established. Also, the optimization capabilities in Design-Expert software were used to optimize the sintering process. Historical data design technique under RSM was performed to optimize the input parameter interactions which showed the best conditions for preparation of fly ash pellets. According to the obtained results, the developed models are statistically accurate and can be used for further analysis. The experimental values agreed with the predicted ones, thus indicating suitability of the model employed and the success of RSM in optimizing the sintering conditions.  相似文献   

13.
In this research work, High Performance Concrete (HPC) was produced employing 30% of fly ash and 70% of Portland cement as binder materials. Three types of coarse recycled concrete aggregates (RCA) sourced from medium to high strength concretes were employed as 100% replacement of natural aggregates for recycled aggregate concrete (RAC) production. The specimens of four types of concretes (natural aggregate concrete (NAC) and three RACs) were subjected to initial steam curing besides the conventional curing process. The use of high quality RCA (>100 MPa) in HPC produced RAC with similar or improved pore structures, compressive and splitting tensile strengths, and modulus of elasticity to those of NAC. It was determined that the mechanical and physical behaviour of HPC decreased with the reduction of RCA quality. Nonetheless steam-cured RACs had greater reductions of porosity up to 90 days than NAC, which led to lower capillary pore volume.  相似文献   

14.
为了评价桥面铺装中应用的轻骨料混凝土长期耐久性,利用R ILEM推荐混凝土抗盐冻性能试验标准(CDF)研究了粉煤灰陶粒混凝土与普通混凝土的抗盐冻性能.结果表明:相同强度等级的掺加矿物掺合料的粉煤灰陶粒混凝土的抗盐冻性能明显优于普通混凝土的抗盐冻性能.复掺矿物掺合料混凝土的抗盐冻性能优于单掺矿物掺合料混凝土的抗盐冻性能.与普通混凝土相比,通过SEM-EDXA的分析,掺与未掺矿物掺合料陶粒与水泥石之间的界面过渡区的范围明显变小,这是粉煤灰陶粒混凝土抗除冰盐性能优良的重要原因.  相似文献   

15.
The demand for lightweight concrete is steadily increasing because of economic and practical considerations. Hence, the inherent internal and external features of lightweight aggregates have been a subject of intense research in recent years. This study provides new insight into the micro-structural and chemical factors which influence the strength properties of structural lightweight aggregate concrete. These are described with respect to four expanded clay lightweight aggregates used in nine concrete compositions containing various types and proportions of dispersing agents such as water-reducing admixtures and superplasticizers, with silica fume and ground granulated blast-furnace slag as optional mineral admixtures. The microstructural characteristics of the paste-aggregate interface and the paste porosity of these concretes are discussed. The methods used include scanning electron microscopy-energy-dispersive X-ray analysis, X-ray diffraction analysis, optical microscopy and compressive strength testing.  相似文献   

16.
Cementless slag ash concrete may be manufactured using high-calcium fly ash and silica fume as replacements for a binder and a microfiller, and incorporating slag sand from thermal power plants (TPP) as an aggregate. This concrete consists of waste products from TPP (fly ash and slag) and ferro-alloy plants (silica fume) and contains neither natural nor artificial aggregates for lightweight and heavy concretes. Silica fume (10–20% by weight of ash) and hot water together with subsequent heat treatment of concrete products or of castin situ structures binds the excess free calcium oxide present in the ash, and thus prevents deterioration of the concrete. The processes of concrete structure formation were investigated after 24 hours, 28 days, 3 and 6 months and the physico-mechanical, deformation and special properties (frost resistance, heat conductivity, protection of reinforcement from corrosion) were studied. This concrete conforms to the Russian Federation GOST requirement for use in single, two-storey buildings. The cost of the concrete is reduced by a factor of 3 compared with that of ordinary concrete.  相似文献   

17.
In this paper, the effects of high temperature exposure of recycled aggregate concretes in terms of residual strengths, capillary water absorption capacity and pore size distribution are discussed. Two mineral admixtures, fly ash (FA) and ground granulated blast furnace (GGBS) were used in the experiment to partially replace ordinary Portland cement for concrete production. The water to cementitious materials ratio was maintained at 0.50 for all the concrete mixes. The replacement levels of natural aggregates by recycled aggregates were at 0%, 50% and 100%. The concretes were exposed separately to 300 °C, 500 °C and 800 °C, and the compressive and splitting tensile strength, capillary water coefficient, porosity and pore size distribution were determined before and after the exposure to the high temperatures. The results show that the concretes made with recycled aggregates suffered less deteriorations in mechanical and durability properties than the concrete made with natural aggregates after the high temperature exposures.  相似文献   

18.
This study investigated the thermal resistance of lightweight concrete with recycled coal bottom ash and fly ash. Specimens were exposed to temperatures up to 800 °C then cooled to room temperature before conducting experiments. Compressive strength test, FF-RC test, TG analysis, and XRD analysis were performed to analyze the physicochemical effects of coal ashes on the thermal resistance of concrete. Test results indicated that both bottom ash and fly ash were associated with a substantial increase in the residual strength of thermal exposed concretes. The results were attributed to the surface interlocking effect and the smaller amount of SiO2 for bottom ash. For fly ash, the formation of pozzolanic C-S-H gel and tobermorite retained water at high temperatures, and the consumption of Ca(OH)2 lowered stress from rapid recrystallization after exposure to 600 °C. It was concluded that the incorporation of coal ashes allows for lightweight concrete with good thermal resistance.  相似文献   

19.
This study reports the testing of 12 alkali-activated (AA) mortars and six AA concretes using lightweight aggregates. These tests aimed to explore the significance and limitations of the development of lightweight AA mortar and concrete. Ground granulated blast-furnace slag, which was used as source material, was activated by sodium silicate powder. The main parameter investigated was the replacement level of lightweight fine aggregates to the natural sand. The effect of the water–binder ratio on the compressive strength development was also studied in AA mortars. Initial flow and development of compressive strength were recorded for the lightweight AA mortar. For the lightweight AA concrete, many factors were measured: the variation of slump with elapsed time, the development of compressive strength, splitting tensile strength, moduli of rupture and elasticity, stress–strain relationship, bond strength and shrinkage strain. Test results showed that the compressive strength of AA mortar decreased linearly with the increase of the replacement level of lightweight fine aggregates, regardless of the water–binder ratio. The compressive strength of AA concrete, however, sharply decreased when the replacement level of lightweight fine aggregates exceeded 30%. In particular, the increase in the discontinuous grading of lightweight aggregate resulted in the deterioration of the mechanical properties of AA concrete.  相似文献   

20.
This paper presents the results of an experimental study of the effects of blast furnace slag, different water/(cement + mineral additive) ratios and pumice aggregates on some physical and mechanical properties of self-compacting lightweight aggregate concrete. In this study, pumice was used as lightweight aggregate. Several properties of self-compacting pumice aggregate lightweight concretes, such as unit weight, flow diameter, T50 time, flow diameter after an hour, V-funnel time, and L-box tests, 7, 28, 90 and 180-day compressive strength, 28-day splitting tensile strength, dry unit weight, water absorption, thermal conductivity and ultrasonic pulse velocity tests, were conducted. For this purpose, 18 series of concrete samples were prepared in two groups. In the first group, pumice aggregate at 100% replacement of natural aggregate was used in the production of self-compacting lightweight aggregate concrete with constant w/(c + m) ratios as 0.35, 0.40, and 0.45 by weight. Furthermore, as a second group, pumice aggregate was used as a replacement of natural aggregate, at the levels of 0, 20, 40, 60, 80, and 100% by volume. Flow diameters, T50 times, paste volumes, 28-day compressive strengths, dry unit weights, thermal conductivities and ultrasonic pulse velocity of self-compacting lightweight aggregate concrete were obtained over the range of 600–770 mm, 3–9 s, 435–540 l/m 3, 10.6–65.0 MPa, 845–2278 kg/m 3, 0.363–1.694 W/mK and 2617–4770 m/s respectively, which satisfies not only the strength requirement of semi-structural lightweight concrete but also the flowing ability requirements and thermal conductivity requirements of self-compacting lightweight aggregate concrete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号