首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the last years hardfacing became an issue of intense development related to wear resistant applications. Welding deposits can functionalize surfaces and reclaim components extending their service life. Tool steels are widely used in hardfacing deposits to provide improved wear properties. Nevertheless systematic studies of wear behaviour of new alloys deposited by hardfacing, under different service conditions are scarce. In this work the effects of shielding gas, heat input and post-weld heat treatment on the microstructural evolution and wear resistance of a modified AISI H13 martensitic tool steel deposited by semi-automatic gas shielded arc welding process using a tubular metal-cored wire, were studied. Four coupons were welded with different welding parameters. The shielding gases used were Ar–2% CO2 and Ar–20% CO2 mixtures and two levels of heat input were selected: 2 and 3 kJ/mm. The as welded and 550 °C–2 h post-weld heat treated conditions were considered. From these coupons, samples were extracted for testing metal–metal wear under condition of pure sliding with a load of 500 N. Chemical compositions were determined; microstructure and microhardness were assessed. It was found that content of retained austenite in the microstructure varied with the welding condition and that heat-treated samples showed secondary hardening, associated with precipitation phenomena. Nevertheless, as welded samples showed higher wear resistance than heat treated specimens. Under these test conditions post-weld heat treatment led to a reduction in wear resistance. The best wear behaviour was observed in samples welded with low heat input and under the lowest oxygen potential shielding gas used here, in the as welded condition. The intervening mechanism was mild oxidative. These results were explained in terms of the relative oxidation resistance stemming from different welding conditions.  相似文献   

2.
A novel technology was developed for the arc spot welding of AZ31 Mg alloy to Q235 steel with Cu as interlayer. The mechanisms of bonding dissimilar materials were investigated using mechanical and metallurgical examinations. Results show that the joining of Mg alloy to steel with Cu involved two bonding mechanisms: weld-brazing by the Cu transition layer at the interface edge and bonding by a micron-scale composite transition layer of Al3Cu4Fe3 and Fe4Cu3 intermetallic phases at the interface center. The additional reaction of Cu increased the reaction temperature and composition ranges at the interface. It also elicited a bridge effect that improved the weldability of Mg alloy and steel by new formed phases.  相似文献   

3.
Stainless steel clad plate is widely used in petroleum, chemical and medicine industries due to its good corrosion resistance and high strength. But cracks are often formed in clad layer during the manufacture or service, which are often repaired by repair welding. In order to ensure the structure integrity, the effects of residual stress need to be considered. The objective of this paper is to estimate the residual stress and deformation in the repair weld of a stainless steel clad plate by finite element method. The effects of heat input and welding layer number on residual stresses and deformation have been studied. The results show that large residual stresses have been generated in the repair weld. The heat input and layer number have great effects on residual stress distribution. With the heat input and welding layer number increasing, the residual stresses are decreased. Using multiple-layer welding and higher heat input can be useful to decrease the residual stress, which provides a reference for optimizing the repair welding technology of this stainless steel clad plate.  相似文献   

4.
Friction taper stud welding is a new variant of friction welding which has been developed from the principles of friction hydro-pillar processing. This paper considers the effect of weld process parameters on weld defects, macrostructure and mechanical properties in AISI 4140 steel. It also presents 3D residual stress data for a typical friction taper stud weld. Applied downwards force, rotational speed and plunge depth (equivalent to consumable length) of the stud tool were systematically varied whilst measuring tool torque and temperature at several locations during welding. A simple Taguchi analysis was then used to relate process parameters and weld tensile strength. The combinations of parameters leading to high tensile strength are identified and linked to the occurrence of specific weld defects.  相似文献   

5.
Investigating the failure mode and failure mechanism of the dissimilar thickness dual phase sheets resistance spot welding joints was the objective of this study. Three distinct failure modes were observed during the tensile shear test: interfacial, partial interfacial and pullout failure. The results of the stress analysis of welded joints show that the tensile stress leads to the interfacial failure and the shear stress leads to the pullout failure. Due to more serious stress concentration and heat affected zone (HAZ) softening of DP780 side, the fracture is initiated from the DP780 steel.  相似文献   

6.
Stretch forming is an important process in making complex stampings for autobody components. In the present work formability of three different types of tailor welded blanks (TWBs) in biaxial stretch forming modes has been studied by conducting limiting dome height (LDH) tests. The TWBs are laser-welded samples of low carbon and ultra low carbon steel sheets with difference in thickness, grade and surface conditions. In TWBs with difference in thickness, the LDH decreases as the thickness ratio increases and the thickness of the thinner side is also crucial. A high thickness ratio causes two major strain peaks on thinner side and fracture takes place due to strain localization at the peak close to the pole. The weld ductility and the extent of difference in properties are the two crucial parameters for formability in TWBs with difference in properties. In both these TWBs, the fracture takes place perpendicular to the weld line and propagates towards the stronger side. Significant weld line movement occurs towards the thicker/stronger side in biaxial stretch forming. The maximum weld line movement occurs at the pole and it increases with increase in thickness ratio and becomes constant beyond a certain thickness ratio. The peak load required to deform the TWB specimens is less compared to the corresponding parent sheets. In case of TWBs with difference in thickness, as the thickness ratio increases, the peak load reduces due to decreasing punch-blank contact area.  相似文献   

7.
In this study, resistance spot welding (RSW) experiments were performed in order to evaluate the microstructure and mechanical properties of single-lap joints between DP780 and DP600. The results show that the weld joints consist of three regions including base metal (BM), heat affected zone (HAZ) and fusion zone (FZ). The grain size and martensite volume fractions increase in the order of BM, HAZ and FZ. The hardness in the FZ is significantly higher than hardness of base metals. Tensile properties of the joints were described in terms of the failure modes and static load-carrying capabilities. Two distinct failure modes were observed during the tensile shear test of the joints: interfacial failure (IF) and pullout failure (PF). The FZ size plays a dominate role in failure modes of the joints.  相似文献   

8.
The joint of dissimilar metals between 2205 duplex stainless steel and 16MnR low alloy high strength steel are welded by tungsten inert gas arc welding (GTAW) and shielded metal arc welding (SMAW) respectively. The microstructures of welded joints are investigated using scanning electron microscope, optical microscope and transmission electron microscopy respectively. The relationship between mechanical properties, corrosion resistance and microstructure of welded joints is evaluated. Results indicate that there are a decarburized layer and an unmixed zone close to the fusion line. It is also indicated that, austenite and acicular ferrite structures distribute uniformly in the weld metal, which is advantageous for better toughness and ductility of joints. Mechanical properties of joints welded by the two kinds of welding technology are satisfied. However, the corrosion resistance of the weldment produced by GTAW is superior to that by SMAW in chloride solution. Based on the present work, it is concluded that GTAW is the suitable welding procedure for joining dissimilar metals between 2205 duplex stainless steel and 16MnR.  相似文献   

9.
A study was carried out to evaluate the effect of joint design on ballistic performance of armour grade quenched and tempered steel welded joints. Equal double Vee and unequal double Vee joint configuration were considered in this study. Targets were fabricated using 4 mm thick tungsten carbide hardfaced middle layer; above and below which austenitic stainless steel layers were deposited on both sides of the hardfaced interlayer in both joint configurations. Shielded metal arc welding process was used to deposit for all layers. The fabricated targets were evaluated for its ballistic performance and the results were compared in terms of depth of penetration on weld metal. From the ballistic test results, it was observed that both the targets successfully stopped the bullet penetration at weld center line. Of the two targets, the target made with unequal double Vee joint configuration offered maximum resistance to the bullet penetration at weld metal location without any bulge at the rear side. The higher volume of austenitic stainless steel front layer and the presence of hardfaced interlayer after some depth of soft austenitic stainless steel front layer is the primary reason for the superior ballistic performance of this joint.  相似文献   

10.
The purpose of this study is to investigate the effects of the specific fluxes used in the tungsten inert gas (TIG) process on surface appearance, weld morphology, angular distortion, mechanical properties, and microstructures when welding 6 mm thick duplex stainless steel. This study applies a novel variant of the autogenous TIG welding, using oxide powders (TiO2, MnO2, SiO2, MoO3, and Cr2O3), to grade 2205 stainless steel through a thin layer of the flux to produce a bead-on-plate joint. Experimental results indicate that using SiO2, MoO3, and Cr2O3 fluxes leads to a significant increase in the penetration capability of TIG welds. The activated TIG process can increase the joint penetration and the weld depth-to-width ratio, and tends to reduce the angular distortion of grade 2205 stainless steel weldment. The welded joint also exhibited greater mechanical strength. These results suggest that the plasma column and the anode root are a mechanism for determining the morphology of activated TIG welds.  相似文献   

11.
This paper reports the fatigue behaviour of friction welded medium carbon steel–austenitic stainless steel (MCS–ASS) dissimilar joints. Commercial grade medium carbon steel rods of 12 mm diameter and AISI 304 grade austenitic stainless steel rods of 12 mm diameter were used to fabricate the joints. A constant speed, continuous drive friction welding machine was used to fabricate the joints. Fatigue life of the joints was evaluated conducting the experiments using rotary bending fatigue testing machine (R = −1). Applied stress vs. number of cycles to failure (S–N) curve was plotted for unnotched and notched specimens. Basquin constants, fatigue strength, fatigue notch factor and notch sensitivity factor were evaluated for the dissimilar joints. Fatigue strength of the joints is correlated with microstructure, microhardness and tensile properties of the joints.  相似文献   

12.
Hybrid laser – metal active gas (MAG) arc welding is an emerging joining technology that is very promising for shipbuilding applications. This technique combines the synergistic qualities of the laser and MAG arc welding techniques, which permits a high energy density process with fit-up gap tolerance. As the heat input of hybrid laser – arc welding (HLAW) is greater than in laser welding, but much smaller than in MAG arc welding, a relatively narrow weld and restricted heat affected zone (HAZ) is obtained, which can minimize the residual stress and distortion. Furthermore, adding MAG arc can increase the penetration depth for a given laser power, which can translate to faster welding speeds or fewer number of passes necessary for one-sided welding of thick plates. In this work, a new hybrid fiber laser – arc welding system was successfully applied to fully penetrate 9.3 mm thick butt joints using a single-pass process through optimization of the groove shape, size and processing parameters.  相似文献   

13.
In order to study the interactions between the two heat sources in both laser-arc double-sided welding (LADSW) and double-sided arc welding (DSAW), some welding characteristics including weld configuration, energy efficiency, weld microstructure and mechanical properties of the both processes were contrastively investigated. The results show that the weld cross-section of LADSW within the proper welding parameter takes on the combination of typical weld profiles of gas tungsten arc welding and laser welding, while the DSAW takes on a quasi-symmetrical shape. The energy efficiency of LADSW is higher than DSAW, probably due to the higher heat transfer efficiency in laser welding and stronger effect of laser on the arc. The weld microstructures of the both processes characterized by scanning electron microscope mainly consist of α and β phase, whereas the grain size and second-phase particle size vary a great deal for the different heat input. The tensile strength of LADSW is 91.7% of base metal, compared with that of 82.3% of DSAW, and the elongation is also higher than DSAW. The fracture micromorphology of LADSW indicates a more typical dimple fracture than that of DSAW. It is considered that the better mechanical properties of LADSW are attributed to the finer grain size.  相似文献   

14.
Microstructure and mechanical properties of friction stir weld joints of dissimilar Mg alloys AZ31 and AZ80 were investigated in the present work. Several different welding parameters were adopted in the study, and the effects of rotation speed and welding speed on the joint quality were discussed comprehensively. In addition, material arrangement which means that AZ31 alloy was at advancing side or at retreating side has significant influence on the joint formation, including the joint microstructure and mechanical properties. A few kinds of defects were observed when the improper parameters were taken in the experiment, and the reasons for generating these defects were revealed in this work. Sound joints with good mechanical properties could be easily obtained when AZ31 was at retreating side, but it was difficult to obtain the sound joint with the contrary material arrangement. These results suggest that the material with inferior plastic deformability should be set at the advancing side and the material with superior one should be set at the retreating side in order to get sound FSW joint of dissimilar Mg alloys.  相似文献   

15.
The importance of chemical composition and microstructure on CO2 corrosion of carbon and low alloy steels has been widely recognized, but different aspects are still uncertain and contradictory results can be found in the literature. This is mainly due to the complexity of the problem and the difficulty to describe the involved mechanisms. The chemical composition and the microstructure are not independent variables; the same microstructure can be obtained with different chemical compositions and vice versa. Some authors report the effect of one of these parameters without taking into account that the other has been also modified. However, test conditions also vary widely, making them almost impossible to compare. As a consequence of the situation depicted above, it is evident that a more systematic work is required to clarify the mechanisms involved and to develop a selection criterion for the available information. The aim of the present work is to review and discuss the available information about the effect of microstructure and composition of carbon and low-alloyed steel on corrosion resistance in CO2 environments. The influence of these parameters on the efficiency of corrosion inhibitors is also considered.  相似文献   

16.
Tests for fatigue crack growth rate (FCGR) and crack-tip opening displacement (CTOD) were performed to clarify the fatigue crack growth behavior of a railway grade B cast steel. The threshold values of this steel with specific survival probabilities are evaluated, in which the mean value is 8.3516 MPa m1/2, very similar to the experimental value, about 8.7279 MPa m1/2. Under the conditions of plane strain and small-scale yielding, the values of fracture toughness for this steel with specific survival probabilities are converted from the corresponding critical CTOD values, in which the mean value is about 138.4256 MPa m1/2. In consideration of the inherent variability of crack growth rates, six statistical models are proposed to represent the probabilistic FCGR curves of this steel in entire crack propagation region from the viewpoints of statistical evaluation on the number of cycles at a given crack size and the crack growth rate at a given stress intensity factor range, stochastic characteristic of crack growth as well as statistical analysis of coefficient and exponent in FCGR power law equation. Based on the model adequacy checking, result shows that all models are basically in good agreement with test data. Although the probabilistic damage-tolerant design based on some models may involve a certain amount of risk in stable crack propagation region, they just accord with the fact that the dispersion degree of test data in this region is relatively smaller.  相似文献   

17.
Advanced high strength steels (AHSS) are increasingly used in sheet metal stamping in the automotive industry. In comparison with conventional steels, AHSS stampings produce higher contact pressures at the interface between draw die and sheet metal blank, resulting in more severe wear conditions, particularly at the draw die radius. Developing the ability to accurately predict and reduce the potential tool wear during the tool design stage is vital for shortening lead times and reducing production cost. This paper investigates the effects of draw die geometry on the sheet metal tool wear distribution over the draw die radius using numerical and experimental methods. A numerical tool wear model is introduced and applied using the commercial software package Abaqus. Channel bend tests are carried out using an Erichsen sheet metal tester to verify the numerical model. Various geometries of radius arc profiles, including standard circular profiles, high elliptical profiles, and flat elliptical profiles, are numerically investigated, and the wear volume and contact pressure distribution along the radii are determined. The results show that the profile of the draw die radius has a significant effect on the wear distribution, and that a low contact pressure distribution can be achieved by using a combination of circular and high elliptical curved geometries.  相似文献   

18.
Submerged friction stir welding (FSW) in cold and hot water, as well as in air, was carried out for 7050 aluminum alloys. The weld thermal cycles and transverse distributions of the microhardness of the weld joints were measured, and their tensile properties were tested. The fracture surfaces of the tensile specimens were observed, and the microstructures at the fracture region were investigated. The results show that the peak temperature during welding in air was up to 380 °C, while the peak temperatures during welding in cold and hot water were about 220 and 300 °C, respectively. The temperature at the retreated side of the joint was higher than that at the advanced side for all weld joints. The distributions of microhardness exhibited a typical “W” shape. The width of the low hardness zone varied with the weld ambient conditions. The minimum hardness zone was located at the heat affected zone (HAZ) of the weld joints. Better tensile properties were achieved for joint welded in hot water, and the strength ratio of the weld joint to the base metal was up to 92%. The tensile fracture position was located at the low hardness zone of the weld joints. The fracture surfaces exhibited a mixture of dimples and quasi-cleavage planes for the joints welded in cold and hot water, and only dimples for the joint welded in air.  相似文献   

19.
Friction stir welding (FSW) has been widely applied in aluminum alloy manufacturing with its advantages of low residual stress and small deformation. But some FSW cases indicated that the residual distortion was still significant if a large size sheet be welded. In order to reduce the residual distortion of large aluminum alloy sheet after FSW, a general method adopted in this paper was that some stiffeners were designed on the sheet before it be welded. The process of FS-welded structure (sheet with stiffeners) was numerically simulated by finite element analysis (FEA) method. Based on the numerical simulation, the residual distortion of the structure was predicted and the effect of stiffeners was investigated. First, a three-dimensional FEA model was developed to analyze the welding process on a sheet, and the simulation results were verified by FSW experiments. Then, the verified model was applied on structure to compute residual distortion. The prediction displayed that the distortion pattern of structure was convex in longitudinal direction and concave in transversal direction after FSW. In simulation results, the distortion shape of structure was similar to that of sheet, but the distortion value of structure was much smaller. The comparison of simulation results showed that the residual plastic strain generated by FSW on the sheet and the structure was nearly the same, so the part of distortion which was reduced by stiffeners was the distortion induced by buckling.  相似文献   

20.
In this study, impact behavior of the aluminum alloys of 7075 and 5083 and the high-strength low-alloy steel, AISI 4140 was investigated under 7.62 mm armor piercing (AP) projectile experimentally. Various heat treatments were applied to the alloys AISI 4140 and 7075 to see the effect of hardness and strength on their ballistic behaviors. Experimental results showed that among the investigated materials, the best ballistic performance was attained with the alloy, 7075-T651 which maintained the ballistic protection with the areal density 85 kg/m2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号