首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, various existing instability criteria were employed to delineate the unstable flow regions in modified 9Cr–1Mo steel during hot deformation. Experimental stress–strain data obtained from isothermal hot compression tests, in a wide range of temperatures (1123–1373 K) and strain rates (10−3–10 s−1), were employed to develop instability maps. The domains of these instability maps were validated through detailed microstructural study. It has been observed that Hart’s stability criterion, Jonas’s criterion and Semiatin’s criterion under-predicts the instability regions in the studied temperatures and strain rates regime. Gegel’s and Alexander’s criteria as well as Murty’s metallurgical instability criterion, on the other hand, found to over-predict the instability domains. The instability map developed based on Dynamic Materials Model criterion has been found to precisely predict the instability domains. This instability map revealed four major unstable domains. Microscopic examination in these domains revealed that the instability is manifested in the specimens either as localized deformation band primarily along one of the diagonal or inhomogeneous distribution of martensite lath in the prior austenite grains.  相似文献   

2.
The rate of dynamic recrystallization in 17-4 PH stainless steel   总被引:1,自引:0,他引:1  
The hot working behavior of 17-4 PH stainless steel (AISI 630) was studied by hot compression test at temperatures of 950–1150 °C with strain rates of 0.001–10 s−1. The progress of dynamic recrystallization (DRX) was modeled by the Johnson–Mehl–Avrami–Kolmogorov (JMAK) kinetics equation. The flow softening was directly related to the DRX volume fraction and the DRX time was determined by strain rate. For quantification of recrystallization rate, the reciprocal of the time corresponding to the DRX fraction of 0.5% or 50% was used. Analysis of the sigmoid-shaped recrystallization curves revealed that the rate of DRX increases with increasing deformation temperature and strain rate. The Zener-Hollomon parameter (Z) was found to be inappropriate for analysis of DRX kinetics. Therefore, the dynamic recrystallization rate parameter (DRXRP) was introduced for this purpose. The DRXRP may be determined readily from the Avrami analysis and can precisely predict the rate of DRX at hot working conditions.  相似文献   

3.
A new Mg-7.8%Li-4.6%Zn-0.96%Ce-0.85%Y-0.30%Zr alloy has been developed. α phase, β phase and RE-containing intermetallics formed in the alloy. It is found that the alloy can easily be extruded at 260 °C with σ0.2 = 256 MPa, σb = 260 MPa and δ = 14%. Hot deformation behavior of the extruded alloy was studied using the processing map technique. Compression tests were conducted in the temperature range of 250-450 °C and strain rate range of 0.001-10 s−1 and the flow stress data obtained from the tests were used to develop the processing map. The different efficiency domains and flow instability region corresponding to various microstructural characteristics have been identified as follows: (1) Domain I occurs in the temperature range of 250-275 °C and strain rate range of 1-10 s−1, with a peak efficiency of about 50% at 250 °C/10 s−1. Incomplete DRX process has occurred in β phase and DRX process hardly occurs in α phase; (2) Domain II occurs in the temperature range of 250-275 ?C and strain rate range of 0.001-0.003 s−1, with a peak efficiency of about 42% at 250 °C/0.001 s −1. Incomplete DRX process has occurred in β phase and α phase; (3) Domain III occurs in the temperature range of 400-450 °C and strain rate range of 1-10 s−1, with a peak efficiency of about 42% at 450 °C/10 s−1. Complete DRX process has occurred in β phase and α phase. No cracking, cavity and band of flow localization are observed in flow instability region. The optimum parameters for hot working of the alloy are 250 °C/10 s−1 and 250 °C/0.001 s−1, at which fine dynamic recrystallization microstructure will be achieved. RE-containing intermetallics and α phase accelerate the DRX process in β phase. The softer β phase reduces the driving force for DRX process in α phase, so DRX process in α phase is retarded.  相似文献   

4.
Hot deformation and processing maps of extruded ZE41A magnesium alloy   总被引:1,自引:0,他引:1  
The hot deformation behavior and microstructure evolution of extruded ZE41A magnesium alloy has been studied using the processing map. The compression tests were conducted in the temperature range of 250–450 °C and the strain rate range of 0.001–1.0 s−1 to establish the processing map. The dynamic recrystallization (DRX) and instability zones were identified and validated through micrographs. The observations were performed in order to describe the behavior of the material under hot forming operation in terms of material damage and micro-structural modification.  相似文献   

5.
The hot compressive deformation behavior of a new hot isostatically pressed Ni–Cr–Co based powder metallurgy (P/M) superalloy was studied in the temperature range of 950–1150 °C and strain rate range of 0.0003–1 s−1 using Gleeble-1500 thermal simulator. The dynamic recrystallization-time–temperature (RTT) curve was developed and the constitutive equation of flow stress during hot deformation was established. The results show that the flow stress decreases with increasing deformation temperature and decreasing strain rate. The flow stress represents as the characteristic of dynamic crystallization with the increasing of strain at the deformation temperatures lower than 1100 °C and strain rates higher than 0.0003 s−1. The beginning time of dynamic crystallization has no linear relationship with deformation temperature in the condition of strain rate lower than 0.01 s−1. Besides, the experiments verify that the hyperbolic sine model including the variable of strain reflects the changing law of flow stress during the hot deformation process.  相似文献   

6.
Isothermal forging of a rib–web shape in AZ31B magnesium alloy in the rolling direction was conducted at speeds of 0.01–10 mm s−1 in the temperature range of 300–500 °C with the purpose of validating the results of materials models involving kinetic analysis and processing map. The process was also simulated using finite element method DEFORM to obtain the local values of strain and strain rate. Forging parallel to the rolling direction in the range 375–550 °C and 0.0003–0.3 s−1 under the conditions of dynamic recrystallization (DRX) resulted in a symmetrical cup-shape while at other conditions an elliptical boat-shape was produced with the major axis coinciding with the transverse direction and the minor axis aligned with the normal direction. This anisotropy of flow has been attributed to the strong basal texture in the rolled plate and the dominance of prismatic slip at lower temperatures. In the DRX domain on the other hand, pyramidal slip dominates along with cross-slip as the recovery mechanism, which destroys the initial texture and restores the symmetry of flow. The grain size variation for forgings done in the DRX domain validated the predictions of the material models.  相似文献   

7.
Isothermal forging of electrolytic copper is modeled using finite element simulation and materials models involving kinetic analysis and processing maps with a view to validate their predictions. Forging experiments were conducted on a rib–web (cup) shape in the temperature range of 300–800 °C and at speeds of 0.01–10 mm s−1. The processing map for hot working of electrolytic copper revealed two domains in the temperature and strain ranges of (1) 400–600 °C and 0.001–0.01 s−1, (2) 650–950 °C and 0.3–30 s−1, where dislocation core diffusion and lattice self-diffusion are the rate-controlling mechanisms, respectively. Finite element simulation using the relevant experimental constitutive equations, predicted load–stroke curves that correlated well with the experimental data. The simulation has shown that there is a strain variation from about 0.4 to 4 in the web and rib regions of the forged component, although the dynamically recrystallized grain structure is fairly uniform, suggesting that dynamic recrystallization (DRX) is not sensitive to strain once the steady state flow is reached. The DRX grain size in the component is linearly dependent on Z and is similar to that predicted by the materials model after discounting for the longer time taken for the component removal.  相似文献   

8.
The deformation behavior and microstructural evolution of a 7075-T6 aluminum alloy have been investigated through applying hot compression tests at different temperatures and strain rates (450, 500, 520, 550, 580 °C and 0.004, 0.04 and 0.4 s−1). The peak stress levels in different conditions were extracted from the related true stress–true strain curves. Different dynamic recrystallization (DRX) mechanisms including continuous, discontinuous and geometrical ones were proposed to justify the corresponding results of various thermomechanical processing conditions. Furthermore, the results indicated that the recrystallized structure had been spheroidized in the semi-solid temperature range due to the liquid pressure and their sizes were reduced with increasing the strain rate.  相似文献   

9.
The hot ductility of Fe–29Ni–17Co alloy was studied in both cast and wrought conditions by hot tensile tests over temperature range of 900–1250 °C and at strain rates of 0.001–1 s−1. Over the studied temperature range, the wrought alloy represented higher elongation and reduction in area as compared to the cast alloy. Dynamic recrystallization was found responsible for the higher hot ductility of the wrought alloy and the improvement of hot ductility of the cast alloy at high temperatures. At temperature range of 1000–1150 °C the wrought alloy exhibited a hot ductility drop while a similar trough was not observed in case of the cast alloy. It was also found that at temperatures of 1150–1250 °C the best hot ductility is achieved in both cases of cast and wrought alloy. The experimental data of flow stress were constitutively analyzed and the apparent activation energy of deformation was estimated to be 344 kJ/mol.  相似文献   

10.
A study on the hot workability of wrought NiTi shape memory alloy   总被引:1,自引:0,他引:1  
The hot workability of a wrought 49.8 Ni-50.2 Ti (at pct) alloy was assessed using the hot compression tests in temperature range of 700-1000 °C, strain rate of 0.001-1 s−1, and the total strain of 0.7. The constitutive equations of Arrhenius-type hyperbolic-sine function was used to describe the flow stress as a function of strain rate and temperature. The preferable regions for hot workability of the alloy were achieved at Z (Zener-Holloman parameter) values of about 109-1013 corresponding to the peak efficiency of 20-30% in the processing map. However, a narrow area in the processing map including the deformation temperature of 1000 °C and strain rate of 1 s−1 is inconsistent with the related Z values. A flow instability region was observed at high Z values. Further instability regions were found at low temperature of 700 °C and low strain rates of 0.01-0.001 s−1 as well as at high temperature of 1000 °C and high strain rate of 1 s−1. The apparent feature of flow curves, the low value of peak efficiency, the similarity between the estimated apparent activation energy of deformation and that of the self diffusion of Ti in Ni, and the stress exponent of higher than 5, suggested that dynamic recovery (DRV) is the dominant restoration phenomenon during the hot working of the alloy.  相似文献   

11.
Workability, an important parameter in metal forming process, can be evaluated by means of processing maps on the basis of dynamic materials model (DMM), constructed from experimentally generated flow stress variation with respect to strain, strain rate and temperature. To obtain the processing maps of wrought AZ80 magnesium alloy, hot compression tests were performed over a range of temperatures 523–673 K and strain rates 0.01–10 s−1. As the true strain is 0.25, 0.45, 0.65, 0.85 respectively, the response of strain-rate sensitivity (m-value), power dissipation efficiency (η-value) and instability parameter (ξ-value) to temperature and strain rate were evaluated. By the superimposition of the power dissipation and the instability maps, the stable, metastable and unstable regions were clarified clearly. In further, in the stable area the regions having the highest efficiency of power dissipation were identified and recommended. The optimal working parameters identified by the processing maps contribute to designing the hot forming process of AZ80 magnesium alloy without any defect.  相似文献   

12.
The hot deformation characteristics of the 2205 duplex stainless steel were analyzed using constitutive equations and processing maps. The hot compression tests were performed at temperature range of 950-1200 °C and strain rate of 0.001-1 s−1. Flow stress was modeled by the constitutive equation of hyperbolic sine function. However, the stress exponent and strain rate sensitivity were different at low and high deformation temperatures where austenite and ferrite are dominant, respectively. It was recognized that strain at the peak point of flow curve increases with the Zener-Hollomon parameter, Z, at low temperature deformation while at high temperature deformation it actually decreases with Z. The power dissipation map, instability map and processing map were developed for the typical strain of 0.3. It was realized that dynamic restoration mechanisms could efficiently hinder the occurrence of flow instability at low and medium strain rates. Otherwise, the increase in strain rate at low and high temperatures could increase the risk of flow instability.  相似文献   

13.
The mechanical behavior and microstructural evolution of Ni60 wt%–Ti40 wt% during hot deformation were investigated. The compression tests were carried out at the temperature range of 900–1050 °C and at the strain rates of 0.001–0.35 s−1. Besides, the effects of strain on the hot working behavior, flow stress, activation energy and strain rate sensitivity were studied. The microstructural evolution was characterized using optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX).  相似文献   

14.
In order to improve the understanding of the dynamic recrystallization (DRX) behaviors of as-cast AZ80 magnesium alloy, a series of isothermal upsetting experiments with height reduction 60% were performed at the temperatures of 523 K, 573 K, 623 K and 673 K, and the strain rates of 0.01 s−1, 0.1 s−1, 1 s−1 and 10 s−1 on a Gleeble 1500 thermo-mechanical simulator. Dependence of the flow stress on temperature and strain rate is described by means of the conventional hyperbolic sine equation. By regression analysis, the activation energy of DRX in the whole range of deformation temperature was determined to be Q = 215.82 kJ mol−1. Based on dσ/d? versus σ curves and their processing results, the ?ow stress curves for AZ80 magnesium alloy were evaluated that they have some characteristic points including the critical strain for DRX initiation (?c), the strain for peak stress (?p), and the strain for maximum softening rate (?*), which means that the evolution of DRX can be expressed by the process variables. In order to characterize the evolution of DRX volume fraction, the modified Avrami type equation including ?c and ?* as a function of the dimensionless parameter controlling the stored energy, Z/A, was evaluated and the effect of deformation conditions was described in detail. Finally, the theoretical prediction on the relationships between the DRX volume fractions and the deformation conditions were validated by the microstructure graphs.  相似文献   

15.
The hot deformation behaviors of Ag-containing 2519 aluminum alloy were studied by isothermal compression at 300–500 °C with strain rates from 0.01 s−1 to 10 s−1. The microstructural evolution of the alloy was investigated using Polyvar-MET optical microscope and Tecnai G2 20 transmission electron microscope (TEM). It has been shown that the flow stress of the alloy increases with increasing the strain rate and decreasing the deformation temperature. When the strain rate is lower than 10 s−1, the flow stress increases with increasing strain until the stress reached the peak value, after which the flow stress remains almost constant. This result indicates that dynamic recovery happens during deformation. When the strain rate is 10 s−1 and the temperature is higher than 300 °C, serrated flow behavior is generally observed with the stress decreasing with increasing strain, a typical phenomenon of dynamic recrystallization.  相似文献   

16.
Powder metallurgy technique has been explored to synthesize a titanium aluminide alloy with the composition 46Ti–46Al–4Nb–2Cr–2Mn by mixing of elemental powders followed by hot isostatic pressing (HIP). The microstructure of the compact revealed the formation TiAl solid solution in addition to a Nb-rich phase. Cylindrical specimens from the HIP’ed billets were compressed at temperatures and strain rates in the ranges of 850–1050 °C and 0.0001–10 s−1. A processing map has been developed on the basis of flow stress data at different temperatures and strain rates, which revealed that the alloy may be hot worked in the range 925–1050 °C and 0.0001–0.01 s−1. Kinetic analysis of the flow stress data yielded a stress exponent of 4.4 and apparent activation energy of 387 kJ/mole which is close to that for self-diffusion of Al in γ TiAl.  相似文献   

17.
Both the critical stress and strain for initiation of dynamic recrystallization (DRX) were determined using: (1) the strain hardening rate versus stress curve, (2) the natural logarithm of strain hardening rate versus strain curve, and (3) the constitutive equations. In order to perform these analyses, the behavior of a 17-4 PH stainless steel during hot compression test was investigated at temperatures of 950–1150 °C and strain rates of 0.001–10 s−1. The first and second methods were found to be the best ones for determining the critical stress and strain, respectively. The Cingara constitutive equation was also used to model the flow curves up to the peak point and subsequently was used for predicting the critical strain. In summary, for 17-4 PH stainless steel, the DRX was found to start when the normalized stress and strain reach to the values of 0.89 and 0.47, respectively.  相似文献   

18.
This paper presents an investigation that characterizes the evolution of the dynamically recrystallized structure of 30Cr2Ni4MoV ultra-super-critical rotor steel during hot deformation, as a starting point for studies of the static recrystallization (SRX) and the metadynamic recrystallization (MDRX) behaviors, by hot compression tests which are performed at the temperatures from 1243 K to 1543 K and strain rates from 0.001 s−1 to 0.1 s−1 on Gleeble-3500 thermo-mechanical simulator, and the corresponding flow curves are obtained. A third-order polynomial is then fitted to the work hardening region of each curve. The critical stress for initiation of dynamic recrystallization (DRX) can be calculated by setting the second derivative of the third order polynomial. By regression analysis, the activation energy in whole range of deformation temperature is determined to be Q = 368.45 kJ/mol. The complete DRX grain size (Ddrx) of the test steel is a function of Zener-Hollomon parameter (Z) and is independent of the true strain. The relationship of Ddrx and Z is found to be described in a form of power law function with an exponent of −0.24.  相似文献   

19.
Hot deformation behaviour of Fe-25Mn-3Si-3Al twinning-induced plasticity (TWIP) steel was investigated by hot compression testing on Gleeble 3500 thermo-mechanical simulator in the temperature range from 800 to 1100 °C and at strain rate range from 0.01 to 5 s−1, and the microstructural evolution was studied by metallographic observations. The results show that the true stress-true strain curves exhibit a single peak stress at certain strain, after which the flow stresses decrease monotonically until the end of deformation, showing a dynamic flow softening. The peak stress level decreases with increasing deformation temperature and decreasing strain rate, which can be predicted by the Zener-Hollomon (Z) parameter in the hyperbolic sine equation with the hot deformation activation energy Q of 405.95 kJ/mol. The peak and critical strains can also be predicted by Z parameter in power-law equations, and the ratio of critical strain to peak strain is about 0.7. The dynamic recrystallization (DRX) is the most important softening mechanism for the experimental steel during hot compression. Furthermore, DRX procedure is strongly affected by Z parameter, and the decreasing of Z value leads to more extensive DRX.  相似文献   

20.
An as-received (AR) DIN 22NiMoCr37 nuclear reactor pressure vessel steel has been heat treated for 1 h at austenitising temperatures of 1373 and 1473 K to obtain different austenite grain sizes. After austenitising, the samples were water quenched, tempered for 2 h at 923 K, water quenched and then held isothermally at 793 K for 180 h before final air-cooling. The AR condition had a tempered bainite microstructure and a prior austenite grain size of 30 μm, whereas the heat treated conditions were tempered martensite and had a prior austenite grain size of approximately 100 μm for the 1373 K condition and ‘extraordinary’ large austenite grains (>1 mm diameter) for the 1473 K condition. Their low temperature fracture properties were determined and were related to the susceptibility to segregation induced embrittlement. Despite the heat treated conditions having a larger prior austenite grain size compared to the AR condition, at a given testing temperature, the tempered martensitic 1373 K condition generally exhibited higher strength and higher fracture toughness values at 123 K. The heat treated conditions generally exhibited higher local fracture stress (σf) values in 0.2 mm blunt notch SE(B)-0.4T specimens at 123 and 77 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号