首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 103 毫秒
1.
Nanoparticles of lanthanum ferrite (LaFeO3) and calcium-doped LaFeO3 (La1xCaxFeO3, x = 0.05-0.20) with perovskite-type structure have been prepared in a reverse microemulsion. Perovskite powder could be obtained at 500 °C for 3 h. The prepared powders were characterized by thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffraction (XRD) and UV-Vis absorption spectroscopy. The visible-light photocatalytic activity of the photocatalysts was tested with methylene blue as an objective decomposition substance using fluorescence light as a visible light resource. The results showed that partial substitution of La3+ in LaFeO3 with Ca2+ could decrease the crystalline size, enhance visible light absorption and improve visible light photocatalytic activity.  相似文献   

2.
At low temperature, Mn-doped ZnO mesocrystals have been prepared in a hydrated ionic liquid precursor tetrabutylammonium hydroxide (TBAH). A clear hysteresis with coercive field Hc = 85 Oe and remanence Mr = 0.0213 emu g−1 was observed in Zn0.95Mn0.05O mesocrystals, but only paramagnetism was observed in Zn0.95Mn0.05O nanorods. The morphologies, structures, chemical state, optical properties and room temperature ferromagnetic properties of the synthesized Zn0.95Mn0.05O samples could be controlled simply by changing the concentration of zinc acetate in ionic liquid precursor.  相似文献   

3.
La(1 − x)AlxFeO3 (x = 0, 0.1, 0.3) has been prepared by solid state reaction method. The formation of pure crystallographic phase of LaFeO3 and the substitution of Al3+ in all the doped samples have been confirmed by Rietveld analysis. The magnetic measurements viz., magnetization curves, hysteresis loops etc. in the temperature range 300-5 K showed that magnetization of the doped samples has been appreciably enhanced compared to that of the pristine LaFeO3. The maximum enhancement factor of ~ 19 for saturation magnetization measured at room temperature has been found in La0.7Al0.3FeO3.  相似文献   

4.
Room temperature ferromagnetism (RTFM) was observed in both La-doped and pure ZnO nanoparticles synthesized by the sol–gel method. RTFM is intrinsic according to the results of X-ray diffraction and X-ray photoelectron spectroscopy. The saturation magnetization (MS), the remnant magnetization at zero field and coercive field are 5 × 10−3, 7 × 10−4 emu g−1, 100 Oe for Zn0.99La0.01O nanoparticles and 1.5 × 10−4, 1 × 10−5 emu g−1, 50 Oe for pure ZnO nanoparticles, respectively. The magnetization is enhanced greatly by doping of La. Furthermore, the MS of Zn0.99La0.01O nanoparticles decreases from 0.005 to 0.001 emu g−1 as the annealing temperature increases from 500 to 700 °C. The doping of La introduces more oxygen vacancies into ZnO. The decrease of annealing temperature also produces more oxygen vacancies in La-doped ZnO. These results indicate that the origin of the RTFM is related to oxygen vacancies.  相似文献   

5.
The thermoelectric properties of the tetradymite-type Bi2−xSbxTe2S solid solution (0 ≤ x ≤ 2) are reported for the temperature range 5-300 K. The properties of non-stoichiometric, Cl and Sn doped n- and p-type variants are reported as well. The Seebeck coefficients for these materials range from −170 to +270 μV K−1 while the resistivities range from those of semimetals, 2 mΩ cm, to semiconductors, >1000 mΩ cm. Thermal conductivities were low for most compositions, typically 1.5 W m−1 K−1. Nominally undoped Bi2Te2S shows the highest thermoelectric efficiency amongst the tested materials with a ZT = 0.26 at 300 K that decreased to 0.04 at 100 K. The crystal structure of Sb2Te2S, a novel tetradymite-type material, is also reported.  相似文献   

6.
Lead-free piezoelectric (Bi0.95Na0.75K0.20−xLix)0.5Ba0.05TiO3 ceramics have been prepared by conventional process for different lithium substitutions. The SEM images show that the ceramics are well sintered at 1428 K. Dielectric and ferroelectric measurements have been performed. With the increasing of lithium substitution, the Curie temperature of the (Bi0.95Na0.75K0.20−xLix)0.5Ba0.05TiO3 ceramics shifts from 570 K to 620 K, but the maximum value of the dielectric constant decreases from 6700 to 4700 correspondingly. A relatively larger remanent polarization of 36.8 μC/cm2 has been found in the x = 0.05 sample. The coercive field decreases as the lithium substitution amount increases. An optimized d33 = 194 × 10− 12 C/N and a relative dielectric constant εr = 1510 have been obtained in (Bi0.95Na0.75K0.15Li0.05)0.5Ba0.05TiO3.  相似文献   

7.
In this paper, simple chemical solution deposition method is used to prepare La0.95Sr0.05CoO3 thin films on SrTiO3 (001) substrates by acetate-based precursors. The derived film is characterized by x-ray diffraction, field-emission scanning electron microscopy and transmission electronic microscopy. The derived film is epitaxial growth with < 001>[100] La0.95Sr0.05CoO3||<001>[100] SrTiO3, indicating that the chemical solution deposition is an effective route to obtain the cobalt-based films. The resistivity, Seebeck coefficient and thermal power factor are 0.05Ω cm, 250 μV/K and 0.21 mWK− 2m− 1 at 300 K, respectively, which is higher than these of the ceramics, indicating epitaxial thin film is an effective route to enhance the thermoelectric properties of La0.95Sr0.05CoO3.  相似文献   

8.
Enhanced thermoelectric properties of NaCo2O4 by adding ZnO   总被引:1,自引:0,他引:1  
K. Park  J.H. Lee 《Materials Letters》2008,62(15):2366-2368
The primary phase present in the as-sintered Na(Co1 − xZnx)2O4 (0 ≤ x ≤ 0.1) bodies was the solid solution of the constituent oxides with a bronze-type layered structure. The electrical conductivity of the Na(Co1 − xZnx)2O4 samples significantly increased with an increase in ZnO content. The sign of the Seebeck coefficient for all samples was positive over the whole temperature range (723-1073 K), i.e., p-type conduction. The power factor of Na(Co0.95Zn0.05)2O4 showed an outstanding power factor (1.7 × 10 3Wm 1 K 2) at 1073 K. The power factor was above four times superior to that of ZnO-free NaCo2O4 (0.4 × 10 3Wm 1 K 2). This originates from an unusually large Seebeck coefficient (415 μVK 1) accompanied with high conductivity (127Ω 1 cm 1) at 1073 K.  相似文献   

9.
Gel formation was realized by adding citric acid to a solution of La(NO3)3·5H2O, Ca(NO3)2·4H2O, and Fe(NO3)2·9H2O. Perovskite-type (La1−xCax)FeO3 (0 ≤ x ≤ 0.2) was synthesized by firing the gel at 500 °C in air for 1 h. The crystallite size (D1 2 1) decreased with increasing x, while the specific surface area was 6.8-9.4 m2/g and independent of x. The XPS measurement of the (La1−xCax)FeO3 surface indicated that the Ca2+ ion content increased with increasing x, while the Fe ion content was independent of x. Catalytic activity for CO oxidation increased with increasing x.  相似文献   

10.
Single-phase, co-doped (La3+, Zr4+) in polycrystalline Bi0.95La0.05Fe1−xZrxO3 (with x = 0, 0.02, 0.04 and 0.06) ceramics (particle size ∼650 nm; tolerance factor ∼0.883) were prepared by solid state reaction of oxides, followed by rapid quenching of samples. Enhanced magnetization was observed in co-doped (La3+, Zr4+) BiFeO3 which may be ascribed to the collapse of the spiral spin structure. Step magnetization was observed in zero field cooled (ZFC) and field cooled (FC) curves. The coexistence of ferromagnetism and ferroelectricity has been confirmed in the co-doped (La3+, Zr4+) in BiFeO3 ceramics by means of (M–H) and (P–E) loops measurements. Magnetodielectric properties have been observed at room temperature.  相似文献   

11.
The microwave dielectric properties and the microstructures of the (1−x)MgTiO3-xCaTiO3 ceramic system were investigated. With partial replacement of Mg by Co, dielectric properties of the (1−x)(Mg0.95Co0.05)TiO3-xCaTiO3 ceramics can be promoted. The microwave dielectric properties are strongly correlated with the sintering temperature. At 1275°C, the 0.95(Mg0.95Co0.05)TiO3-0.05CaTiO3 ceramics possesses excellent microwave dielectric properties: a dielectric constant εr of 20.3, a Q×f value of 107 000 ( at 7 GHz) and a τf value of −22.8 ppm/°C. By appropriately adjusting the x value in the (1−x)(Mg0.95Co0.05)TiO3-xCaTiO3 ceramic system, zero τf value can be achieved. With x=0.07, a dielectric constant εγ of 21.6, a Q×f value of 92 000 (at 7 GHz) and a τf value of −1.8 ppm/°C was obtained for 0.93(Mg0.95Co0.05)TiO3-0.07CaTiO3 ceramics sintered at 1275°C for 4 h.  相似文献   

12.
Cr-doped ZnO, i.e. Zn1−xCrxO (x = 0.00, 0.05, 0.10, 0.15 and 0.20) nanoparticles were synthesized by sol–gel route. The structural and morphological properties of these nanoparticles were investigated by high resolution transmission electron microscope (HRTEM). The average particle size of Zn1−xCrxO nanoparticles decreases from 75 to 40 nm with the increase in x from 0.00 to 0.20. The rings observed in selected area diffraction pattern revealed that up to x = 0.10 these nanoparticles have single phase ZnO. However, a secondary spinel phase of ZnCr2O4 was observed for higher Cr doping (x ≥ 0.15). The optical band gap calculated using UV–visible absorption was decreased from 3.27 to 2.27 eV with the increase in Cr-doping from 0.00 to 0.20 in ZnO nanoparticles. The undoped ZnO (Zn1−xCrxO; x = 0.00) nanoparticles did not show any hysteresis loop at room temperature, however, clear loops were obtained for x = 0.05–0.20. Additionally, magnetization (M) vs. applied magnetic field (H) loops for lower Cr-concentration (x = 0.05) saturate at 5 kOe, and while those with higher Cr concentration (x > 0.05) do not show saturation even at 10 kOe. This may be attributed to increase in the defects at higher Cr-doping into ZnO. The value of saturation magnetization was found to decrease from 4.24 emu g−1 to 1.96 emu g−1 with the increase in Cr doping from x = 0.05 to 0.20 in ZnO and may be due to the secondary ZnCr2O4 phase.  相似文献   

13.
Oxides with the nominal chemical compositions Li5La3Sb2O12 and Li6SrLa2Sb2O12 were prepared by solid-state reaction. The structures were refined by the Rietveld method using powder X-ray diffraction data. The synthesis of Li5La3Sb2O12 resulted in the well known garnet-related structure plus 5 wt.% of La2LiSbO6 in the bulk. In contrast to that, Li6SrLa2Sb2O12 could be synthesised in single garnet-related type phase. Lithium ion conductivities of Li5La3Sb2O12 and Li6SrLa2Sb2O12 were studied by the ac impedance method. The grain-boundary contribution to the total (bulk + grain-boundary) resistance is very small and about 5 and 3% for Li5La3Sb2O12 and Li6SrLa2Sb2O12, respectively, at 24 °C and decreases further with increase in temperature. Among the investigated compounds, Li5La3Sb2O12 exhibits the highest total (bulk + grain-boundary) and bulk ionic conductivity of 7.8 × 10−6 and 8.2 × 10−6 S cm−1, respectively, at 24 °C. The structural data indicate that the coupled substitution Li + Sr ⇒ La leads to a closure of the bottle neck like O-O distances of the shared edges of neighbouring Li octahedra and therefore reduces the mobility of Li ions in Li6SrLa2Sb2O12. Scanning electron microscope (SEM) images of the Li6SrLa2Sb2O12 compound revealed well crystallised large homogeneous grains (∼4.8 μm) and the grains were in good contact with the neighbouring grain, which leads to a smaller grain-boundary contribution to the total resistance.  相似文献   

14.
Na1−xLaxTa1−xCrxO3 and NaTa1−xCrxO3 (x = 0.01, 0.03, 0.05 and 0.10) have been synthesized by a solid state reaction method. These photocatalysts can produce H2 in the presence of methanol under visible light irradiation (λ > 420 nm). The photocatalytic activities of Na1−xLaxTa1−xCrxO3 are much higher than those of NaTa1−xCrxO3, respectively. Especially, the H2 evolution rate of Na0.9La0.1Ta0.9Cr0.1O3 is 2.2 μmol h−1, which is nearly 4 times higher than that of NaTa0.9Cr0.1O3 (0.6 μmol h−1). The improved activities of Na1−xLaxTa1−xCrxO3 compared with NaTa1−xCrxO3 can be ascribed to two factors: one is smaller particle size and higher specific surface area which is caused by the doping of lanthanum; the other is that Na1−xLaxTa1−xCrxO3 has less Cr6+, which is induced by codoping of lanthanum and chromium.  相似文献   

15.
La2−xBaxMo2O9−x/2 (x ≤ 0.18) have been prepared by solid state reaction method. The lattice parameter of La2−xBaxMo2O9−x/2 (x ≤ 0.18) determined by XRD data refinement shows a linear dependence on the dopant Ba content x. For the specimen with a La/Ba molar ratio of 0.18-0.2, additional reflection of secondary phase exists in the XRD pattern, so the value of solubility limit for Ba in La2Mo2O9 is defined in range of 0.18 < x < 0.2. As the replacement degree of La3+ by Ba2+ increases, the bulk conductivity of La2−xBaxMo2O9−x/2 (x ≤ 0.18) decreases initially and then increases, a minimum value at La1.9Ba0.1Mo2O8.95 exists. Hebb-Wagner studies in argon atmosphere, which use an oxide-ion blocking electrode, show that La2−xBaxMo2O9−x/2 (x ≤ 0.18) are predominantly oxide-ion conducting in the temperature ranging from 773 to 1173 K. The average thermal expansion coefficient of La1.84Ba0.16Mo2O8.92 determined by high-temperature XRD was deduced as great as 17.5 × 10−6 K−1 between 298 and 1173 K.  相似文献   

16.
The La1−xBix(Mg0.5Sn0.5)O3 ceramics were prepared by the conventional solid-state method with various sintering temperatures. The X-ray diffraction patterns of the La0.97Bi0.03(Mg0.5Sn0.5)O3 ceramics revealed no significant variation of phase with sintering temperatures. An apparent density of 6.50 g cm−3, a dielectric constant (?r) of 20.2, a quality factor (Q × f) of 58,100 GHz and a temperature coefficient of resonant frequency (τf) of −84.2 ppm °C−1 were obtained for La0.97Bi0.03(Mg0.5Sn0.5)O3 ceramics that were sintered at 1550 °C for 4 h.  相似文献   

17.
Lead-free ceramics (1 − x)(K0.5Na0.5)0.95Li0.05Sb0.05Nb0.95O3-xSmAlO3 (KNLNS-xSA) were prepared by conventional sintering technique. The phase structure, dielectric and piezoelectric properties of the ceramics were investigated. All compositions show a main perovskite structure, exhibiting room-temperature symmetries of tetragonal at x ≤ 0.0075, of pseudo-cubic at x = 0.0100. The Curie temperature of KNLNS-xSA ceramics decreases with increasing SmAlO3 content. Moreover, the addition of SmAlO3 can effectively broaden the sintering temperature range of the ceramics. The KNLNS-xSA ceramic with x = 0.0050 has an excellent electrical behavior of piezoelectric coefficient d33 = 226 pC/N, planar mode electromechanical coupling coefficient kp = 38%, dielectric loss tan δ = 3.0%, mechanical quality factor Qm = 60, and Curie temperature TC = 327 °C, suggesting that this material could be a promising lead-free piezoelectric candidate for piezoelectric applications.  相似文献   

18.
Lead-free thick film negative temperature coefficient (NTC) thermistors based on perovskite-type BaCoIIxCoIII2xBi1 − 3xO3 (x ≤ 0.1) were prepared by mature screen-printing technology. The microstructures of the thick films sintered at 720 °C were examined by X-ray diffraction and scanning electron microscopy. The electrical properties were analyzed by measuring the resistance-temperature characteristics. For the BaBiO3 thick films, the room-temperature resistivity is 0.22 MΩ cm, while the room-temperature resistivity is sharply decreased to about 3 Ω cm by replacing of Bi with a small amount of Co. For compositions 0.02 ≤ x ≤ 0.1, the values of room-temperature resistivity (ρ23), thermistor constant (B25/85) and activation energy are in the range of 1.995-2.975 Ω cm, 1140-1234 K and 0.102-0.111 eV, respectively.  相似文献   

19.
Thin films of Ge28−xSe72Sbx (x=0, 8, 16, 24 at%) with thickness of 200 nm are prepared by thermal evaporation onto glass substrates under vacuum of 5.3×10−5 mbar. Optical reflectance and transmittance of these films are measured at room temperature in the light wavelength region from 200 to 1100 nm. The estimated optical energy gap, Eg, is found to decrease from 2 eV (0 at% Sb) to 1.5 eV (24 at% Sb), whereas the band tail width, Ee, increases from 0.062 to 0.077 eV, respectively. The refractive index, n, and extinction coefficient, κ, are determined as functions of wavelength. The DC electrical conductivity, σ, of films is measured as a function of temperature in the range from 300 to 360 K. The extracted value of activation energy, ΔE, is found to decrease from 0.95 eV (0 at% Sb) to 0.74 eV (24 at% Sb). Optical and electrical behavior of films can be explained in terms of cohesive energy (CE) and Se-Se defect bonds.  相似文献   

20.
The electrochemical reduction of nitrous oxide and oxygen has been studied on cone-shaped electrodes of La1−xSrxFeO3−δ perovskites in an all solid state cell, using cyclic voltammetry. It was shown that the activity of the La1−xSrxFeO3−δ perovskites for the electrochemical reduction of nitrous oxide mainly depends on the amount of Fe(III) and oxide ion vacancies. The activity of the La1−xSrxFeO3−δ perovskites towards the electrochemical reduction of nitrous oxide is much lower than the activity of the La1−xSrxFeO3−δ perovskites towards the electrochemical reduction of oxygen, making the possibility of electrochemically reducing nitrous oxide selectively in an exhaust gas containing excess oxygen on this type of materials very doubtful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号