首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocrystalline Pr1−xZrxO2−δ (0 ≤ x ≤ 1) and Pr1−xyPdyZrxO2−δ (x = 0.50, y = 0.02) solid solutions have been synthesized by a single step solution combustion method. The whole range of solid solution compositions crystallize in cubic fluorite structure. The lattice parameter ‘a’ linearly varied up to x = 1.0. Oxygen-storage capacity (OSC) and redox properties of Pr1−xZrxO2−δ (0.0 ≤ x ≤ 0.8) solid solutions have been investigated by temperature-programmed reduction (TPR) and are compared with those of Ce1−xZrxO2. Pr1−xZrxO2−δ exhibited H2 uptake and CO oxidation at a lower temperature than Ce1−xZrxO2. Small amount of Pd ion (y = 0.02) substitution was found to bring down the temperature of oxygen release-storage significantly.  相似文献   

2.
WOx–ZrO2 support was calcined at various temperatures for obtaining controllable activity of copper catalysts for NOx reduction by ammonia. The temperature window of copper catalyst for over 80% NOx conversion shifts from 180–300 to 230–350 °C by elevating the calcination temperature of WOx–ZrO2 support from 500 to 600 °C, due to the increased Brønsted acidity and reduced structure and electronic interactions between copper oxides and tungsten oxides arising from the polymerization of WOx clusters on surface of support. Calcining WOx–ZrO2 support at 700 °C leads to the reduced redox property of copper oxides on the Cu–O–W interface and the formation of bulk-like CuO, results in a low activity of catalyst.  相似文献   

3.
Ag2+δSexTe1−x (x = 0-1) nanocrystals (NCs) with different Se and Te content are prepared by a simple hydrothermal process using a SexTe1−x NC template. Both rod- and dot-shaped NCs are obtained, a variation from the rod-shaped SexTe1−x template. The Ag2+δSexTe1−x NC thin films are dense with an atomic ratio δ between Ag and SexTe1−x that can be controlled in the range of δ = 0.1-0.3. The MR effect of Ag2+δSexTe1−x NCs is found to be related to the composition as well as annealing temperature. MR of the Ag2.2Se0.2Te0.8 NC thin films shows a rapid increase to 68% at 239 K and 8 T, an observation providing very useful fundamental information necessary for future applications in the fabrication of high-quality MR sensors and other electronic devices.  相似文献   

4.
Scheelite-type Ca1−xSmxMoO4+δ electrolyte powders were prepared by the sol-gel auto-combustion process. The crystal structure of the samples was determined by employing the techniques of X-ray diffraction (XRD). According to the XRD analysis, the formed continuous series of Ca1−xSmxMoO4+δ (0 ≤ x ≤ 0.3) solid solutions had the structure of tetragonal scheelite, and the lattice parameters increased with increasing x in the Sm-substituted system. Results of sinterability and electrochemical testing revealed that the performances of Sm-doped calcium molybdate were superior to that of pure CaMoO4. Ca1−xSmxMoO4+δ ceramics show higher sinterability, and the Ca0.8Sm0.2MoO4+δ sample with 98.7% of the theoretical density were obtained after being sintered at 1250 °C for 4 h. The conductivity increased with increasing samarium content, and a total conductivity 9.54 × 10−3 S cm−1 at 800 °C could be obtained in Ca0.8Sm0.2MoO4+δ sintered at 1250 °C for 4 h.  相似文献   

5.
To elucidate the electronic state and the conduction mechanism of Nd2NiO4+δ series oxides at high temperatures, the electrical conductivity, Seebeck coefficient, and nonstoichiometric oxygen content of Nd2−xSrxNiO4+δ (x = 0, 0.2, 0.4) were measured as a function of the Sr content, temperature, and oxygen partial pressure. The hole mobility is estimated from the electrical conductivity and the hole concentration which is defect chemically determined. The mobility slightly decreases as temperature increases as in metals at high temperatures. The relationships between the Seebeck coefficient, electrical conductivity, and hole concentration can be explained by Mott's equation, which expresses the Seebeck coefficient for metals. Semi-quantitative analyses strongly indicate that the electron or hole is itinerant in Nd2−xSrxNiO4+δ, and the conduction mechanism is metal-like band conduction at high temperatures. Based on the experimental results, schematics for energy level and band structure are proposed. At high temperatures, free holes in the σx2−y2 band composed of dx2−y2 orbitals contribute to metallic conduction.  相似文献   

6.
BaCe0.8Y0.2O3−δ and BaCe0.9−xYxNb0.1O3−δ (x = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35) were prepared by a solid-state reactions. It was found that the BaCe0.8Y0.2O3−δ samples decomposed into CeO2 and BaCO3 after being exposed in the atmosphere (3% CO2 + 3% H2O + 94% N2) at 700 °C for 10 h. However, samples containing Nb remains unchanged in the same conditions, demonstrating a better stability in the presence of CO2 and H2O. The conductivity of BaCe0.9−xYxNb0.1O3−δ increased with the increase of Y content (x ≤ 0.30), and the highest value was observed at x = 0.30 where a significant decrease in conductivity took place at x = 0.35. The conductivity of BaCe0.6Y0.3Nb0.1O3−δ reaches 0.01 S/cm in humid hydrogen at 700 °C, slight lower than BaCe0.8Y0.2O3−δ, 0.012 S/cm in the same conditions. Fuel cell with BaCe0.6Y0.3Nb0.1O3−δ as-prepared was successfully prepared and humidified hydrogen was supplied as fuels in evaluating the fuel cell performance. The open circuit voltage, peak power density and interfacial resistance at 700 °C were 1.02 V, 345 mW/cm2 and 0.27 Ω cm2, respectively.  相似文献   

7.
The reducibility of oxide-ion conductors La2−xBaxMo2−yWyO9−δ (x = 0, 0.06; y = 0, 0.1, 0.5, 1.0) and La2Mo1.9A0.1O9−δ (A = Al, Ga) were studied in the reducing atmosphere of 5%H2 + Ar by means of impedance spectroscopy measurement. The introduction of Ba at La site in La2Mo2−yWyO9 can lower the sintering temperature by about 100 K in comparison with the La2Mo2−yWyO9 samples. All substitutions can enhance the conductivity and improve the reducibility in the temperature range from 548 to 923 K. The double substitution of Ba and W as well as substitution of Al or Ga at Mo sites has a better stabilizing effect than the single tungsten substitution. Among these substitutions the introduction of Al has the best stabilizing effect.  相似文献   

8.
Perovskites of the composition La1−xSrxFeO3−δ (x = 0.0, 0.1, 0.5, 0.9, 1.0) were prepared by the conventional solid state reaction route. The single phase behaviour was assessed by XRD analysis, the electronic properties were investigated by Fe K-edge X-ray absorption spectroscopy. The work is focused on the valence state of iron and the oxygen vacancies of the perovskites investigated. The XRD measurements revealed that the solid state reaction yields cubic perovskites for x = 1, 0.9, rhombohedral perovskites for x = 0.5, and orthorhombic perovskites for x = 0, 0.1. The X-ray absorption data are discussed in detail with respect to Fe K-edge shift, white-line intensity, pre-edge features, and the EXAFS data. The first peak in the Fourier transform of the Chi × k3 and Chi × k2 functions was simulated for a detailed analysis of scattering contributions from the first oxygen shell to evaluate the Fe-O bond length. The substitution of lanthanum by strontium leads to a corresponding increase of the iron valence state and thus to the formation of the Jahn-Teller Fe4+ ion. This is causing disorder in the first coordination shell and thus an increase of the Debye-Waller factor with increasing x. The Fe-O bond length obtained from XRD and especially from X-ray absorption data are consistent with δ-values close to zero.  相似文献   

9.
The YBaCo4O7+d (Y-114) phase has recently attracted interests as a potential oxygen storage material due to its oxygen intake/release capability at 200-400 °C. Nevertheless, thermal instability of Y-114 has been an obstacle for future applications, since this compound immediately starts to decompose when the sample is heated at 700-800 °C in oxygen-rich atmosphere. Here we demonstrate that Al-for-Co substitution in Y-114 drastically enhances the thermal stability. Substituting only 10 at.% of aluminum for cobalt in Y-114 essentially suppresses the decomposition reaction seen at 700-800 °C, while well retaining its remarkable oxygen intake/release capability at 200-400 °C. It is also revealed that the addition of aluminum effectively reduces the particle size. The Al-substituted Y-114 products exhibit superior oxygen intake/release response to the Al-free products upon switching the atmosphere between O2 and N2.  相似文献   

10.
We report here the preparation and properties of La1 − xAgyMnO3 + δ thin epitaxial films. The original two-step preparation procedure was developed. At first, La1 − xMnO3 + δ were grown epitaxially by metal-organic chemical vapor deposition on the single-crystal substrates (001) and (110) SrTiO3, (001) LaAlO3, (111) and (001) ZrO2(Y2O3). Treatment by the vapor of the metallic silver in the oxygen atmosphere (at 1 bar and 20 bar) was the second step resulting in the selective absorption of silver by La1 − xMnO3 + δ phase. The value of y depended on the process conditions and revealed different kinetics of the silver absorption for (001) and (110) orientation of La1 − xMnO3 + δ films. The films prepared were characterized by X-ray diffraction, scanning electron microscopy with energy-dispersion X-ray analysis, high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, electrical resistivity and magnetoresistance measurements in a four-probe configuration. We have found that metal-insulator transition temperature (Tp) in the series La1 − xAgxMnO3 + δ possessed a maximum of 380 K at x = 0.15. Thus, Tp of La1 − xAgxMnO3 + δ films was significantly higher than ever reported in the literature for the La1 − xAgxMnO3 + δ ceramics. La1 − xAgxMnO3 + δ films demonstrated the important role of the ferromagnetic fluctuations above Curie temperature Tc resulting in the sign change of the resistivity curve temperature slope dR / dT and a significant shift of Tp well above Tc. The maximum of the magnetoresistance on the temperature scale was close to dR / dT maximum. The intrinsic magnetoresistance values as high as 22% at 310 K and 50% at 280 K were measured in the magnetic field of 1 T in the series of La1 − xAgyMnO3 + δ epitaxial films.  相似文献   

11.
The effect of lowering the A-site stoichiometry of La-Fe-Ni based perovskite solid oxide fuel cell cathodes was investigated with electrochemical impedance spectroscopy on cone-shaped electrodes using a Ce0.9Gd0.1O1.95 electrolyte. It was shown that a lowering of the A-site stoichiometry lowers the amount of Ni in the perovskite phase, as powder XRD revealed that NiO was expelled from the perovskite lattice when the A-site stoichiometry was decreased. NiO inhibit the reduction of oxygen as the activity of a nominally A-site deficient La1−sFe0.4Ni0.6O3−δ perovskite was worse than the activity of the corresponding LaFe0.4+sNi0.6−sO3−δ perovskite without NiO. NiO is therefore poison for the reduction of oxygen at the cathode in a solid oxide fuel cell.  相似文献   

12.
The method of preparing (100)-oriented epitaxial layers of Pb1?xCdxS on (100) NaCl substrates is described. It is found that, by a careful control of substrate temperature and deposition rate, single-crystal films can be grown over the composition range 0?x?0.40, well in excess of the bulk phase diagram limits. Vegard's law is observed, and the lattice constant a0 varies as
a0 = 5.938?0.375x
Some precipitation is observed as x approaches 0.40, together with a rejection of excess cadmium-rich material to the surface. It is concluded that metastable films can be readily prepared from these materials.  相似文献   

13.
Electrical conduction properties of complex perovskite-type oxides in the (La0.5Sr0.5)(Mg0.5+yNb0.5−y)O3−δ (y = 0.02-0.06) series at intermediate-high temperatures were investigated; introduction of protons by hydration of oxide-ion vacancies was expected by increasing the Mg/Nb ratio from unity. The conductivity depended on y and a maximum conductivity was obtained at y = 0.04: σ = 4.9 × 10−6 S cm−1 at 400 °C in wet H2 atmospheres. From electromotive force measurements of hydrogen and water vapor concentration cells, electrical conduction in wet H2 atmospheres can be attributed to ionic conduction, and proton conduction is dominant below 700 °C. Unlike other perovskite-type proton conductors, (La0.5Sr0.5)(Mg0.54Nb0.46)O3−δ was stable in CO2 atmospheres even in the low-intermediate temperature region due to dilution of reactive strontium by lanthanum.  相似文献   

14.
The effects of Sr doping on the electrical properties of Ce0.75(Gd0.95−xSrxCa0.05)0.25O2−δ (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05 mol%) electrolytes thick films were investigated. The samples sintered at 1400 °C for 8 h. X-ray diffraction (XRD) showed typical XRD patterns of a cubic fluorite structure, and the ionic conductivity was examined by AC impedance spectroscopy. From the experimental results, it was observed that Ce0.75(Gd0.95−xSrxCa0.05)0.25O2−δ (x = 0.04 mol%) electrolytes thick film have higher conductivity and minimum activation energy at 600 °C. This is explained in terms of the increased in the oxygen vacancy concentration at the grain boundary.  相似文献   

15.
H1−xLaNb2−xMoxO7 was prepared by solid-state reaction followed by an ion-exchange reaction. Pt was incorporated in the interlayer of H1−xLaNb2−xMoxO7 by the stepwise intercalation reaction. The H1−xLaNb2−xMoxO7 showed hydrogen production activity and the activities were greatly enhanced by Pt co-incorporating. The x value in H1−xLaNb2−xMoxO7 had an important effect on the photocatalytic activity of the catalyst. When the x = 0.05, the H1−xLaNb2−xMoxO7/Pt showed a photocatalytic activity of 80 cm3 h−1 g−1 hydrogen evolution rate in 10 vol.% methanol solution under irradiation from a 100 W mercury lamp at 333 K.  相似文献   

16.
SrFe0.2−xTi0.8CoxO3−δ (x = 0.05-0.2) were prepared by solid-state reaction method. Phase characterization and lattice parameter evaluation were done by X-ray diffraction studies. Relative concentrations of iron in various oxidation states in these compositions were estimated using Mossbauer spectroscopy. Electrical conductivities of these bulk samples were measured in various ambient and temperatures using AC impedance spectroscopy. SrFe0.15Ti0.8Co0.05O3−δ and SrTi0.8Co0.2O3−δ have been found to exhibit good change in electrical conductivity between 21% O2 and 10 ppm O2 in argon.  相似文献   

17.
A single phase perovskite Y0.08Sr0.92FexTi1−xO3−δ (x = 0.05, 0.1,0 0.20, 0.25, 0.40, and 0.50) was fabricated at 1400 °C in air by a solid state reaction method and its electrical conductivity and electrochemical properties as an anode were investigated as a function of the Fe content. Doping with Y for Sr allowed the SrFexTi1−xO3−δ perovskite to be stable at 800 °C in a reducing atmosphere. At 900 °C, metallic Fe precipitated and the stability of the perovskite phase under a reducing atmosphere decreased as the Fe content increased. The conductivity of Y0.08Sr0.92FexTi1−xO3−δ (x = 0.40) was greater than that of the x = 0.20 sample. The conductivity of Y0.08Sr0.92FexTi1−xO3−δ was found to be 2 × 10−1 Scm−1 at 800 °C in H2. Sintering the Y0.08Sr0.92FexTi1−xO3−δ anode at 1200 °C was found to be optimum to obtain not only good interfacial adhesion, but also a fine grain structure. The Y0.08Sr0.92Fe0.25Ti0.75O3−δ anode exhibited the lowest polarization resistance (0.7 and 1.8 Ωcm2 at 800 and 700 °C).  相似文献   

18.
The SOFC interconnect materials La0.7Ca0.3Cr1−xO3−δ (x = 0-0.09) were prepared using an auto-ignition process and characterized. XRD analysis indicated that all the samples displayed a pure perovskite phase after sintered at 1400 °C for 4 h. The relative density increased from 67% (x = 0) to 95.8% (x = 0.02) and reached to about 97% (x > 0.02), as sintered at 1400 °C for 4 h. The electrical conductivity in air dramatically increased and then lowered slowly with x values. The sample with 0.03 Cr deficiency got a maximum conductivity of 61.7 S cm−1 at 850 °C in air, which is about three times as high as that of the sample with no Cr deficiency (20.6 S cm−1). The sample with 0.06 Cr deficiency exhibited the highest electrical conductivity of 3.9 S cm−1 at 850 °C in pure H2. The thermal expansion coefficient (TEC) were below 11.8 × 10−6 K−1 for samples of x = 0.02-0.09, that was of well compatibility with other components in SOFCs. Results indicate that the materials with 0.02-0.06 Cr deficiency have high properties and are much suitable for SOFC interconnect.  相似文献   

19.
Substituted Ce1−xNdxO2−δ cerium dioxide thin films are obtained by pulsed laser deposition technique. The films are deposited for various deposition times and at.% Nd, on [100] Si substrates, covered by a thin native SiO2 layer. The evolution of the cell parameters with Nd content shows that a solid solution is formed, up to x = 0.27. The thin films are homogenous in composition at a nanometer scale. The morphology of the grains does not change significantly with Nd content. The microstructure is columnar, with a preferential [100] growth direction. The width of the grains varies from 20 to 30 nm. The conductivities of the thin films are determined from impedance spectroscopy analyses, in the temperature range 200 °C to 600 °C. The experimental data are explained in the frame of the space charge layer model.  相似文献   

20.
A series of single β-phase nano-Ag1−xCuxI (x = 0-0.5) solid solutions powders were synthesized by wet-chemical-chelating reaction processing and citric acid used as complexing agent. The Ag1−xCuxI powders were determined by X-ray diffraction and transmission electron microscopy. It was demonstrated that the crystalline size and lattice parameter of the Ag1−xCuxI powders decrease with an increase in the amount of CuI substitution. The copper in the lattice of the Ag1−xCuxI can effectively prevent the crystalline growth of the Ag1−xCuxI powders and citrate used in the Ag1−xCuxI powders synthesized process can accelerate single β-phase crystalline structure formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号