首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 211 毫秒
1.
钛合金的应用和低成本制造技术   总被引:20,自引:1,他引:20  
钛及钛合金具有优异的综合性能,是一种重要的金属结构材料,在军工、民用各个领域得到广泛的应用。简要阐述了钛合金的应用现状,分析了降低钛合金成本的可能性途径。  相似文献   

2.
Melt spinning was used to prepare Al75−XSi25CuX (X = 1, 4, 7, 10 mol%) alloy anode materials for lithium-ion batteries. A metastable supersaturated solid solution of Si and Cu in fcc-Al, α-Si and Al2Cu co-existed in the alloys. Nano-scaled α-Al grains, as the matrix, formed in the as-quenched ribbons. The Al74Si25Cu1 and Al71Si25Cu4 anodes exhibited initial discharge specific capacities of 1539 mAh g−1, 1324 mAh g−1 and reversible capacities above 472 mAh g−1, 508 mAh g−1 at the 20th cycle, respectively. The specific capacities reduced as the increase of the Cu content. AlLi intermetallic compound was detected in the lithiated alloys. It is concluded that the lithiation mechanism of the Al–Si-based alloys can be affected by the third component. The structural evolution and volume variation can be mitigated due to the formation of non-equilibrium state and the co-existence of nano-scaled α-Al, α-Si, and Al2Cu for the present alloys.  相似文献   

3.
Titanium and its alloys are frequently used in the production of prostheses and dental implants due to their properties, such as high corrosion resistance, low elasticity modulus, and high mechanical strength/density relation. Among the Ti-based alloys, Ti-35Nb-7Zr-5Ta (TNZT) is one that presents the smallest elasticity modulus (around 45 GPa), making it an excellent alternative to be used as a biomaterial. In this paper, mechanical spectroscopy measurements were made of TNZT alloys containing several quantities of hydrogen in solid solution. Mechanical spectroscopy measurements were made by using a torsion pendulum, operating at an oscillation frequency in the interval 2-20 Hz, temperature in the range 100-300 K, heating rate of about 1 K/min, and vacuum lower than 10−5 Torr. A relaxation structure and a reduction in the elasticity modulus were observed for the heat-treated and doped samples. The observed peak was associated with the interaction of hydrogen trapped by oxygen atoms around the titanium atom of the metallic matrix.  相似文献   

4.
Titanium and titanium-based alloys, which are widely used in various sectors of the national economy, require deep and versatile investigations of their physico-mechanical properties in a wide temperature range. Numerous abnormal physical phenomena are observed in titanium-based alloys at high temperatures, especially in the region of polymorphic transformation. In particular, in addition to significant structural variations, which influence the strength properties of the final products, near such transformations the titanium alloys (especially with a fine structure) have a tendency to superplastic deformation, which is widely applied in modern technology. Among the physical characteristics, which provide extensive information about the structural and physico-mechanical properties of titanium alloys, are the temperature expansion and acoustic properties (in particular, the speed of ultrasound, information about the temperature dependence of which is unavailable for the majority of engineering materials), which allow the Young modulus for these materials to be calculated.  相似文献   

5.
钛铝合金是性能优异的高温合金,在航空航天领域有广泛的应用前景,但由于其熔体具有较高的活性,制备时熔体与所有已知的铸型材料会发生不同程度的反应,限制了钛铝合金铸件的发展.定向凝固技术作为制备高精度钛铝合金的新工艺,使铸件组织定向排列,可以进一步提高钛铝合金的使用性能,因此如何调控凝固过程中钛铝合金熔体与铸型材料间的界面反应成为目前有关定向凝固钛铝合金研究的一个热点.从目前国内外关于钛铝合金熔体与铸型材料间界面反应的研究出发,综述了定向凝固过程中铸型材料、涂层成分、工艺参数及合金元素等对界面反应的影响,介绍了界面反应的理论水平,系统收集了界面反应的各项研究结果.  相似文献   

6.
Titanium nitrides have good mechanical, biomedical and optical properties, therefore they are used to harden and protect cutting and sliding surfaces and as a non-toxic exterior for bio-medical applications. Nitrogen plasma immersion implantation (PIII), in which the diffusion of nitrogen from low pressure r.f. plasma is combined with the implantation of nitrogen ions at energies up to 30 kV, is an effective tool for nitriding titanium and titanium alloys. In this work, samples of pure titanium were nitrided by PIII at different negative high voltage pulses. The properties and the characteristics of the processed samples were evaluated using X-ray diffraction (XRD), Auger electron spectroscopy (AES), ball-on-disk type tribometer, surface profilemeter, and ellipsometry measurements. The results show that, the wear resistance of the untreated sample in comparison to the PIII treated samples is extremely poor and the friction coefficient for the PIII treated samples is decreased to the half value in comparison to the untreated titanium, this attributed to the formation of the solid solution titanium α-Ti(N) and the cubic TiN phases. Ellipsometric measurements were carried out on the PIII treated samples at different negative high voltage pulses. A three layers model was used to fit the calculated data to the experimental ellipsometric spectra. The thickness, surface roughness and refractive index increase with increasing the negative high voltage pulses. The refractive index at 550 nm increases from 1.83 to 2.09 as the negative high voltage pulses increases from 10 to 30 kV.  相似文献   

7.
Titanium alloys, especially β-type alloys containing β-stabilizing elements, constitute a highly versatile category of metallic materials that have been under constant development for application in orthopedics and dentistry. This type of alloy generally presents a high mechanical strength-to-weight ratio, excellent corrosion resistance and low elastic modulus. The purpose of this study is to evaluate the cytotoxicity and adhesion of fibroblast cells on titanium alloy substrates containing Nb, Ta, Zr, Cu, Sn and Mo alloying elements. Cells cultured on polystyrene were used as controls. In vitro results with Vero cells demonstrated that the tested materials, except Cu-based alloy, presented high viability in short-term testing. Adhesion of cells cultured on disks showed no differences between the materials and reference except for the Ti–Cu alloy, which showed reduced adhesion attributed to poor metabolic activity. Titanium alloys with the addition of Nb, Ta, Zr, Sn and Mo elements show a promising potential for biomedical applications.  相似文献   

8.
The effects of molybdenum on the structure and mechanical properties of a Ti-10Zr-based system were studied with an emphasis on improving the strength/modulus ratio. Commercially pure titanium (c.p. Ti) was used as a control. As-cast Ti-10Zr and a series of Ti-10Zr-xMo (x = 1, 3, 5, 7.5, 10, 12.5, 15, 17.5 and 20 wt.%) alloys prepared using a commercial arc-melting vacuum pressure casting system were investigated. X-ray diffraction (XRD) for phase analysis was conducted with a diffractometer. Three-point bending tests were performed to evaluate the mechanical properties of all specimens. The experimental results indicated that these alloys had different structures and mechanical properties when various amounts of Mo were added. The as-cast Ti-10Zr has a hexagonal α′ phase, and when 1 wt.% Mo was introduced into the Ti-10Zr alloy, the structure remained essentially unchanged. However, with 3 or 5 wt.%, the martensitic α″ structure was found. When increased to 7.5 wt.% or greater, retention of the metastable β phase began. The ω phase was observed only in the Ti-10Zr-7.5Mo alloy. Among all Ti-10Zr-xMo alloys, the α″-phase Ti-10Zr-5Mo alloy had the lowest elastic modulus. It is noteworthy that all the Ti-10Zr and Ti-10Zr-xMo alloys had good ductility. In addition, the Ti-10Zr-5Mo and Ti-10Zr-12.5Mo alloys exhibited higher bending strength/modulus ratios at 20.1 and 20.4, respectively. Furthermore, the elastically recoverable angles of these two alloys (26.4° and 24.6°, respectively) were much greater than those of c.p. Ti (2.7°). Given the importance of these properties for implant materials, the low modulus, excellent elastic recovery capability and high strength/modulus ratio of α″ phase Ti-10Zr-5Mo and β phase Ti-10Zr-12.5Mo alloys appear to make them promising candidates.  相似文献   

9.
Titanium for aerospace: Rationale and applications   总被引:1,自引:0,他引:1  
Titanium and titanium alloys are excellent candidates for aerospace applications due to their high strength to weight ratio and excellent corrosion resistance; titanium and its alloys are immune to almost every medium to which they would be exposed in an aerospace environment. Titanium usage is, however, strongly limited by its higher cost relative to competing materials, primarily aluminum alloys and steels. Hence the advantages to using titanium must be balanced against its added cost. The titanium alloys used for aerospace applications, some of the characteristics of these alloys, the rationale for utilizing them, and some specific applications of different types of actual usage will be discussed herein.This is an extension of References 1 and 2, which reviewed applicaiions of alloys. These references will provide more details on applications of the alloys, while the and / alloys are added herein.  相似文献   

10.
The present study was undertaken to investigate the microstructure, microhardness and grindability of a series of cast Ti–10Zr–xCr alloys with 1, 3, 5, 7 and 10 wt.% Cr. The grindability of Ti–10Zr and Ti–10Zr–xCr alloys was evaluated by measuring the amount of metal volume removed after grinding for 1 min at each of the four rotational speeds of the wheel (500, 750, 1000 or 1200 m min−1), with the goal of developing a titanium alloy possessing superior grindability than commercially pure titanium (c.p. Ti). The results indicate that the structure of Ti–10Zr–xCr alloys is sensitive to the Cr content. With Cr contents higher than 3 wt.%, the equi-axed β phase began to be retained, while ω phase was found in the Ti–10Zr–3Cr, Ti–10Zr–5Cr and Ti–10Zr–7Cr alloys. The largest quantity of ω phase and the highest microhardness values were found in the Ti–10Zr–5Cr alloy. The grinding rates of the Ti–10Zr based alloys showed a similar tendency to the microhardness. The Ti–10Zr–5Cr alloy exhibited the best grindability, especially at 500, 750 and 1000 m min−1. Its grinding rate at 1000 m min−1 was about 2.6 times that of c.p. Ti, and the grinding ratio was approximately 2.7 times that of c.p. Ti. This study concluded that because Cr can not only harden Titanium, but also improve its grindability, the Ti–10Zr–5Cr alloy has a great potential for use as a dental machining alloy.  相似文献   

11.
Titanium alloys, because of their excellent mechanical, physical and biological performance, are finding ever-increasing application in biomedical devices. This paper provides an overview of titanium alloy use for medical devices, their current status, future opportunities and obstacles for expanded application. The article is divided into three main sections, the first discussing recent efforts focused on commercial purity titanium. This is followed by considering effects of chemistry, grain size and α/β morphologies on mechanical properties of α + β alloys. Finally, the third section reviews the status of metastable β alloys specifically designed for biomedical applications emphasizing their aging behavior and its effects on mechanical properties.  相似文献   

12.
Titanium and zirconium are in the same group in the periodic table of elements and are known to have similar physical and chemical properties. Both Ti and Zr usually have their surfaces covered by a thin oxide film spontaneously formed in air. However, the cytotoxicity of ZrO2 is lower than that of TiO2 rutile. Treatments with fluoride are known as the main methods to prevent plaque formation and dental caries. The corrosion behaviour of ZrTi alloys with Ti contents of 5, 25 and 45 wt.% and cp-Ti was investigated for dental applications. All samples were tested by linear potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) performed in artificial saliva with different pH levels (5.6 and 3.4) and different fluoride (1000 ppm F) and albumin protein (0.6%) contents. In addition, scanning electron microscopy (SEM) was employed to observe the surface morphology of the test materials after linear potentiodynamic polarisation. The corrosion current densities for the ZrTi alloys increased with the titanium content. The Zr5Ti and Zr25Ti alloys were susceptible to localised corrosion. The role that Ti plays as an alloying element is that of increasing the resistance of ZrTi alloy to localised corrosion. The presence of 0.6% albumin protein in fluoridated acidified artificial saliva with 1000 ppm F could protect the cp-Ti and ZrTi alloys from attack by fluoride ions.  相似文献   

13.
14.
Titanium is a lightweight metal with an outstanding combination of properties which make it the material of choice for many different applications. Nonetheless, its employment at industrial level is not widespread due to higher production costs with respect to competitor metals like steel and aluminium. In this work the production of low-cost titanium alloys is attempted by combining the utilisation of a powder metallurgy process and cheap alloying elements (i.e. commercial 430 stainless steel powder optimised for the powder metallurgy industry). Low-cost titanium alloys are fabricated by blending elemental titanium with stainless steel. The behaviour of the powders as well as that of the sintered materials are analysed and compared to that of a master alloy addition Ti6Al4V alloy. The produced low-cost titanium alloys show comparable properties to both wrought and powder metallurgy titanium alloys and, therefore, they are proposed as an alternative to obtain structural component made out of titanium alloys.  相似文献   

15.
Abstract

The range of applications of titanium and its alloys has broadened considerably in recent years as advances in the users' technologies have brought appropriate responses from the titanium industry. Alloy development to match improvements in aircraft gas-turbine engines is the prime example; useful alloys must strike a balance between creep strength, fatigue strength, and fracture toughness. Dramatic changes in manufacturing techniques are currently widening the range of uses for titanium in airframes, where the metal now accounts for about 7% of the structural weight for commercial aircraft and 20–25% for military aircraft. Other major areas of use are in general and marine engineering, heat exchangers and steam condensers, chemical and electrochemical plant, and surgical implants. Titanium is now an everyday engineering material with a price per unit volume in between stainless steels and nickel-base alloys.

MST/106  相似文献   

16.
Titanium: The implant material of today   总被引:8,自引:0,他引:8  
The use of metals for the replacement of structural components of the human body has been with us for some considerable time. The metals originally used were stainless steels which have gradually been replaced by cobalt-chromium alloys. Although titanium has been used since the late forties, it is only relatively recently that it has gained widespread interest. Titanium and its alloys are being used more and more in preference to the cobalt-chromium alloys and has broadened the field of applications. The features which make titanium such an interesting material are its excellent corrosion resistance in the biological environment, combined with an exception degree of biocompatibility which it shares with only a handful of other materials. In this review the background to the clinical use of titanium is discussed with particular attention to the biological aspects of the material. While there are now many clinical uses for titanium and its alloys their main areas of application are in the field of dentistry and orthopaedics and these are described in some detail.  相似文献   

17.
Study of the hot deformation behaviour in Ti-5Al-5Mo-5V-3Cr-1Zr   总被引:1,自引:0,他引:1  
Structural applications of near beta titanium alloys are gradually increasing in the aerospace industry because of their high specific mechanical properties and good corrosion resistance. Furthermore, a wide range of microstructures can be obtained by thermomechanical processes. This work determines by the use of EBSD technique the mechanism of restoration active in the near beta titanium alloy Ti-5Al-5Mo-5V-3Cr-1Zr for deformations in both α + β and β field near to the β transus temperature (Tβ = 803 °C). Hot compression tests are carried out up to 0.7 true strain by means of a Gleeble® 1500 machine at strain rates of 0.01, 0.1 and 1 s−1. Dynamic recovery of β phase and rotation of the α grains take place predominantly in the α + β field. Further deformation produces continuous dynamic recrystallization of the β phase influenced by the strain rate. Dynamic recovery is observed during deformation above the Tβ, where the misorientation is increasing towards the grain boundaries forming new small grains with a substructure at high strain rates and larger deformation. The stress exponent and the apparent activation energy for the sinh constitutive equations are determined and the microstructural features are correlated with the Zener-Hollomon parameter.  相似文献   

18.
Titanium alloys are favorable implant materials for orthopedic applications, due to their desirable mechanical properties and biochemical compatibility (or bio-inertness). However, current bio-titanium alloys still possess too high an elastic modulus compared with that of the bone, which can lead to premature failure of the implant. Here, a theoretical methodology for the design and development of low modulus Ti alloys and/or structures is provided by means of electronic structural calculations using the discrete variational cluster method (DVM). The preliminary study concentrated on two β-Ti atomic clusters consisting of 15, and 27 atoms, respectively. The binding energies between titanium and various alloying atoms within the clusters were first calculated, from which strength and modulus were then estimated. The results of the calculation suggested that Nb, Mo, Zr and Ta were suitable alloying elements for β-type titanium alloys, capable of enhancing the strength and reducing the modulus of the materials.  相似文献   

19.
An ideal method has been established for calculating the precipitation of α2 ordered phase in near-α titanium alloys based on the theory on the critical electron concentration for the precipitation of α2 ordered phase in near-α titanium alloys. With complete precipitation of α2 phase in near-α titanium alloys, the alloys can be considered to be composed of two parts: (1) the α2 ordered phase with the stoichiometric atomic ratio of Ti3X; (2) the disorder solid solution with the critical composition in which the α2 ordered phase is just unable to precipitate. By using this method, the volume fractions of α2 ordered phase precipitated in Ti-Al, Ti-Sn, Ti-Al-Sn-Zr alloys with various AI, Sn and/or Zr contents have been calculated. The influences of AI and Sn on the precipitation of α2 ordered phase are discussed. The calculating results show substantial agreement with the experimental ones.  相似文献   

20.
Titanium and Ti alloys have been used extensively as bone-implant materials due to their high strength-to-weight ratio, good biocompatibility and excellent corrosion resistance. In this work, we have investigated the effects of the β-stabilizing element Nb on the morphology of nanotubes formed on Ti-xNb alloys using 1.0 M H3PO4 electrolyte containing 0.8 wt.% NaF and various electrochemical methods. Oxide layers consisting of highly ordered nanotubes with a wide range of diameters (approximately 55-220 nm) and lengths (approximately 730 nm-2 μm) can be formed on alloys in the Ti-xNb system as a function of Nb content. The nanotubes formed on the Ti-Nb alloy surface were transformed from the anatase to rutile structure of titanium oxide. The titanium oxide nanotube surface was observed to have lower corrosion resistance in 0.9% NaCl solution compared to titanium oxides surfaces on Ti-xNb alloys without the nanotube morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号