首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A356 aluminum alloy reinforced with 7 wt.% microsilica composites was produced by the three different processing routes viz. liquid metal stir casting followed by gravity casting, compocasting followed by squeeze casting and modified compocasting route and their properties were examined. Microstructure of liquid metal stir cast Al MMC shows agglomeration of particles leading to high porosity level in the developed material. Adopting new route of compocasting followed by squeeze casting process prevents the agglomeration sites with uniform distribution and dispersion of the dispersoids in the matrix metal. Modified compocasting process reduces the segregation of particles in the final composites thus enhancing the mechanical, tribological and corrosion properties of the composites. Superior wear-resistance properties were exhibited by the modified compocast composite compared to the unreinforced squeeze cast alloy and abrasive type wear mechanism was observed in the case of composite. Increasing the sliding speed resulted in the quick evolution of tribolayer and the wear rate of composite gets reduced. The presence of intermetallic phases like MgAl2O4, NaAlSi3O8 and KAlSi3O8 has a favorable effect on increased corrosion resistance of the composite. Microsilica particles significantly enhanced the compressive strength of modified compocast composites compared to the unreinforced squeeze cast Al alloy.  相似文献   

2.
Squeeze casting is a pressurized solidification process wherein finished components can be produced in a single process from molten metal to solid utilizing re-useable die tools. This one activates different physical processes which have metallurgical repercussions on the cast material structure. Desirable features of both casting and forging are combined in this hybrid method. 2017A aluminium alloy, conventionally used for wrought products, has been successfully cast using direct squeeze casting. Squeeze casting with an applied pressure removes the defects observed in gravity die cast samples. Tensile properties and microstructures are investigated. The results show that the finer microstructure was achieved through the squeeze casting. Furthermore, higher pressures improved the fracture properties and decreased the percentage of porosity of the cast alloy. The ultimate tensile strength, the yield strength and the elongation of the squeezed cast samples improved when the squeeze pressure increased.  相似文献   

3.
A new filler material is presented and tested to produce light-weight aluminium alloy composites: the pore space between nano-structured silica-aerogel granulates is infiltrated with Al-alloy melts. Since these filler materials have vanishing density (100?kg m?3), they need not to be removed from the final cast product. Their shape, size and volume fraction determine the materials' properties. Different methods were used to prepare metal-aerogel syntactic foam composites: centrifugal casting, squeeze and suction casting. The last method gave the best results, using an Al–11Si melt. We produced circular and rectangular bars up to 500-mm length. The composite material has a density of around 900?kg m?3, a yield stress of 8?MPa and absorbs 8?kJ kg?1 mechanical energy.  相似文献   

4.
Microstructure and mechanical properties of hyper-eutectic Al-Si alloy fabricated by spray casting were in- vestigated and then these results were compared with those by squeeze cast.The spray-cast specimen was found to have finer Si particles (~5μm) compared to the squeeze-cast specimen (10-25μm).The tensile strength and elongation of the spray-cast specimen are also higher than those of the squeeze cast one.It was considered that the increased mechanical properties of the spray-cast specimen were mainly due to finer size of the Si particles distributed in Al matrix.  相似文献   

5.
目的 研究挤压铸造与超声处理工艺对铸造铝锂合金组织与性能的影响规律,分析工艺改变对组织细化及性能提升的作用机理,解决传统重力铸造下铝锂合金性能较差的问题。方法 将挤压铸造(SC)与超声处理(UT)相结合制备Al-2Li-2Cu-0.5Mg-0.2Zr合金,在熔体超声2 min后,以50 MPa的挤压力制备合金,探究各工艺对铸造铝锂合金显微组织与力学性能的影响。结果 与传统的重力铸造(GC)相比,SC合金的孔隙率和成分偏析显著降低,晶粒尺寸也明显减小,特别是经过UT+SC处理的合金得到了进一步优化。经UT+SC处理后,Al-2Li-2Cu合金的极限抗拉强度(UTS)、屈服强度(YS)和伸长率分别为235 MPa、135 MPa和15%,与GC合金相比,分别提高了113.6%、28.6%、1 150%,与SC合金相比,分别提高了5.4%、3.8%、15.4%。结论 UT+SC工艺能明显提升铸造铝锂合金的性能。UT+SC制备的Al-Li合金的强度和伸长率的提高归因于孔隙率的降低、晶粒细化和第二相的均匀分布。将挤压铸造与超声处理相结合制备铸造铝锂合金解决了重力铸造下合金性能较差的问题,为满足航...  相似文献   

6.
Ductile iron is widely used in the automotive and the related industries.The cast products are produced by using centrifugal casting technique.They are high purity alloys and exhibit stability in the microstructure with similar microstructural appearance.When compared with other static casting methods, higher values in the tensile strength, % elongation, hardness, wear resistance and fatigue strength are obtained with centrifugal casting techniques. In this study, the cast products produced by the centrifugal casting technique using the composite mold consisting of ceramics and metal molds are inspected in order to observe the effect of centrifugal forces on the graphite particles present for discussing the changes observed in the graphite particle distribution, the hardness values and the microstructural formation in the direction from the outer to the center part of the cast product.  相似文献   

7.
Aluminium 2124 alloy and its composite with 10% SiC particles of average particle size of 23 μm were squeeze cast at different pressures. The effect of squeeze pressure during solidification was evaluated with respect to microstructural characteristics using optical microscopy and image analysis and mechanical properties by tensile testing. The microstructural refinement, elimination of casting defects such as shrinkage and gas porosities and improved distribution of SiC particles in the case of the composite were resulted when pressure is applied during solidification. A pressure level of 100 MPa was found to be sufficient to get the microstructural refinement and very low porosity level in both the alloy and the composite. The improved mechanical properties observed in the squeeze cast alloy and the composite could be attributed to the refinement of microstructure within the material.  相似文献   

8.
The Al–5.0 wt% Cu–0.6 wt% Mn alloys with different Fe contents were prepared by gravity die casting and squeeze casting. The difference in microstructures and mechanical properties of the T5 heat-treated alloys was examined by tensile test, optical microscopy, deep etching technique, scanning electron microscope and electron probe micro-analyzer. The results show that both β-Fe and α (CuFe) are observed in T5 heat-treated gravity die cast alloy and only α (CuFe) appears in the squeeze cast alloy when the Fe content is 0.5 wt%. When the Fe content is more than 1.0 wt%, the main Fe-rich intermetallics is α (CuFe) in both squeeze cast and gravity die cast alloys. The mechanical properties of both the gravity die cast and squeeze cast alloys decrease gradually with the increase of Fe content due to the decreased volume fraction of precipitation particles, the increased volume fraction of Fe-rich intermetallics and the increased size of α (Al) dendrites. The squeeze cast alloys with different Fe contents have superior mechanical properties compared to the gravity die cast alloys, which is mainly attributed to the reduction of porosity and refinement of Fe-rich intermetallics and α (Al) dendrite. In particularly, the elongation of the squeeze cast alloys is less sensitive to the Fe content than that of the gravity die cast alloys. An elongation level of 13.7% is obtained in squeeze cast alloy even when the Fe content is as high as 1.5%, while that of the gravity die cast alloy is only 5.3%.  相似文献   

9.
Zinc-aluminum cast alloys (ZA alloys) have good castability, mechanical properties and excellent tribological characteristics. Of all the ZA alloys, ZA-27 (containing 27% aluminum) has the highest strength and optimum wear resistance. However all the ZA alloys, including ZA-27, suffer from lack of creep resistance and high temperature stability. One probable solution to improve these properties is to reinforce the alloys with ceramic particles or fibers to result in metal matrix composites (MMCs). MMCs can be economically produced through squeeze casting which involves infiltration. This paper presents the salient features of an experimental study on ZA-27 alloy based MMCs produced through Squeeze Casting.  相似文献   

10.
In this paper, a new magnesium alloy Mg–12Zn–4Al–0.5Ca (ZAX12405) was prepared by squeeze casting. The effects of processing parameters including applied pressure, pouring temperature and dwell time on the microstructure and mechanical properties of squeeze-cast ZAX12405 alloy were investigated. It was found that squeeze-cast ZAX12405 alloy exhibited finer microstructure and much better mechanical properties than gravity casting alloy. Increasing the applied pressure led to significant cast densification and a certain extent of grain refinement in the microstructure, along with obvious promotion in mechanical properties. Lowering the pouring temperature refined the microstructure of ZAX12405 alloy, but deteriorated the cast densification, resulting in that the mechanical properties firstly increased and then decreased. Increasing the dwell time promoted cast densification and mechanical properties just before the solidification process ended. A combination of highest applied pressure (120 MPa), medium pouring temperature (650 °C) and dwell time (30 s) brought the highest mechanical properties, under which the ultimate tensile strength (UTS), yield strength (YS) and elongation to failure (Ef) of the alloy reached 211 MPa, 113 MPa and 5.2% at room temperature. Comparing with the gravity casting ZAX12405 alloy, the UTS and Ef increased 40% and 300%, respectively. For squeeze-cast Mg–12Zn–4Al–0.5Ca alloy, cast densification was considered more important than microstructure refinement for the promotion of mechanical properties.  相似文献   

11.
Abstract

It is well known that wrought aluminium alloys have tensile properties superior to those of the cast products. Wrought grade alloys cannot usually be produced by conventional casting processes to attain the same level of tensile properties. However, progress in casting methods in recent years has made it possible to produce wrought alloys by means of squeeze casting techniques. In the present study an Al–Zn–Mg–Cu alloy has been produced by squeeze casting. Tensile properties close to those of wrought products have been achieved by controlling the microstructure, pressure, and other processing parameters.  相似文献   

12.
Abstract

An in situ 5 vol.-% TiB2/2014 composite was prepared by an exothermic reaction of K2TiF6, KBF4 and Al melts. The effect of introduction of in situ formed TiB2 particles on the squeeze-casting formability of the composite was discussed. The microstructural evolution and changes in the mechanical properties of the composite at different squeeze pressures were investigated. The results showed that a pouring temperature of 710°C, a die temperature of 200°C and a squeeze pressure of 90 MPa were found to be sufficient to get the qualified squeeze cast and maximum mechanical properties for an Al 2014 alloy. However, the pouring temperature, die temperature and squeeze pressure need to be increased to 780°C, 250°C and 120 MPa for the composite to get the qualified squeeze cast and maximum mechanical properties as a result of the effect of introduction of in situ formed TiB2 particles on the solidification process, plasticity and fluidity of the composite. The microstructural refinement, elimination of casting defects such as shrinkage porosities and gas porosities and improved distribution of TiB2 particles in the case of the composite result when pressure was applied during solidification. Compared with the gravity-cast composite, the tensile strength, yield strength and elongation of the squeeze-cast composite at 120 MPa increased by 21%, 16% and 200%.  相似文献   

13.
实验研究了挤压铸造条件下A390过共晶铝硅合金的金相组织与性能。结果表明,经过挤压铸造后,A390合金的组织致密度提高,缩松、缩孔等缺陷减少,初晶硅晶粒细化。与铁模铸造件比较,A390挤压铸造件的维氏硬度能提高15.2%,室温拉伸强度增幅为25.2%,相对耐磨性能为1.18,高温(300℃)拉伸强度能够达到183MPa。  相似文献   

14.
In this work, an efficient process by diluting the nano-SiCp/Al composite granules in the molten matrix under ultrasonic vibration(UV) was developed to prepare metal matrix nano-composites(MMNCs).Millimeter-sized composite granules with high content of SiC particle(8 wt%) were specially fabricated by dry high-energy ball milling(HBM) without process control agent, and then remelted and diluted in molten Al alloy under UV. The MMNCs melt was finally squeeze cast under a squeeze pressure of 200 MPa, Microstructure of the composite granules during dry HBM was investigated, and the effect of UV on microstructure and mechanical properties of the MMNCs was discussed. The results indicate that nano-SiC particles are uniformly distributed in the nano-SiCp/Al composite granules, which are covered by vestures of pure Al. During diluting, nano-SiC particles released from the composite granules are quickly dispersed in the molten matrix by UV within 4 min. Microstructure of MMNCs is significantly refined under UV and squeeze casting, eutectic Si phase modified to fine islands with an average length of 1.4 μm. Tensile strength of the squeeze cast MMNCs with 1 wt% of nano-SiC particles is 269 MPa, which is improved by 25% compared with the A356 alloy matrix.  相似文献   

15.
One of the great challenges of producing cast metal matrix composites is the agglomeration tendency of the reinforcements. This would normally result in poor distribution of the particles, high porosity content, and low mechanical properties. In the present work, a new method for uniform distribution of very fine SiC particles with average size of less than 3 μm was employed. The key idea was to allow for gradual in situ release of properly wetted SiC particles in the liquid metal. For this purpose, SiC particles were injected into the melt in three different forms, i.e., untreated SiCp, milled particulate Al–SiCp composite powder, and milled particulate Al–SiCp–Mg composite powder. The resultant composite slurries were then cast from either fully liquid (stir casting) or semisolid (compocasting) state. Consequently, the effects of the casting method and the type of the injected powder on the microstructural characteristics as well as the mechanical properties of the cast composites were investigated. The results showed that the distribution of SiC particles in the matrix and the porosity content of the composites were greatly improved by injecting milled composite powders instead of untreated-SiC particles into the melt. Casting from semisolid state instead of fully liquid state had similar effects. The average size of SiC particles incorporated into the matrix was also significantly reduced from about 8 to 3 μm by injecting milled composite powders. The ultimate tensile strength, yield strength and elongation of Al356/5 vol.%SiCp composite manufactured by compocasting of the (Al–SiCp–Mg)cp injected melt were increased by 90%, 103% and 135%, respectively, compared to those of the composite manufactured by stir casting of the untreated-SiCp injected melt.  相似文献   

16.
A new method of making metal-matrix composites is reported. This method combines the essentials of three liquid-phase fabrication methods: (i) vacuum infiltration, (ii) infiltration under an inert gas pressure, and (iii) squeeze casting. In this method, the particulate or fibrous preform is placed in a mould and the matrix alloy is placed above the preform. The matrix alloy is heated to the liquidus temperature together with the mould and the preform under vacuum. Then an inert gas like argon is compressed on to the top surface of the matrix-alloy melt, forcing the melt to infiltrate the preform. The pressure is 1000 to 2500 psi. As the melt is just at liquidus temperature, it is much lower than that used in squeeze casting. Moreover, the pressure is an order of magnitude lower than that used in squeeze casting. The low temperature lessens the interfacial reaction between the matrix and the filler, while the low pressure essentially eliminates preform compression. This method has been successfully used to fabricate aluminium-matrix composites reinforced by short ceramic fibres, continuous ceramic fibres, SiC particles, Al2O3 particles, graphite flakes and SiC whiskers.  相似文献   

17.
18.
本文采用挤压铸造的方法制备了7075铝合金传动空心轴,研究了Al-5Ti-B及RE对挤压铸造7075铝合金铸件微观组织和力学性能的影响.结果表明:未加入细化剂的合金晶粒大小约为50μm,拉伸强度为454 MPa;加入0.29%RE的合金和1%A1-5Ti-B的合金,晶粒尺寸分别了减小到26μm和25μm,拉伸强度分别提...  相似文献   

19.
Silicon carbide reinforced aluminum alloy composite materials produced by casting methods are increasingly used in many engineering fields. However, these materials suffer from poor distribution of the reinforcement particles in the matrix and high content of porosity. The effect of subsequent cold rolling process with different reductions on the porosity, microstructure and mechanical properties of cast Al6061/10 vol.% SiCp composite was investigated in this study. Composites fabricated by compocasting method were rolled at five different reductions of 30, 60, 75, 85 and 95%. The rolled specimens exhibited reduced porosity as well as a more uniform particle distribution when compared with the as-cast samples. Microscopic investigations of the composites after 95% reduction showed an excellent uniform distribution of silicon carbide particles in the matrix. During cold rolling process it was observed that the tensile strength and ductility of the samples increased by increasing the reduction content. After 95% reduction, the tensile strength and elongation values reached 306.7 MPa and 7.9%, which were 4.6 and 3.3 times greater than those of the as-cast composite, respectively.  相似文献   

20.
《Materials & Design》2005,26(6):479-485
The tensile and fatigue properties of zinc–aluminum alloys (ZA-8, ZA-12 and ZA-27) in squeeze and gravity cast forms have been investigated. Tensile tests were conducted at ambient and elevated temperatures up to 150 °C. At low temperatures, the ultimate tensile strength and yielding strength of the squeeze cast alloys have been found to be superior those of the gravity-cast alloys, as the temperature increased they decreased. In the same way, Brinell hardness of the squeeze cast alloys were obtained at higher values than gravity castings. The fatigue tests were performed at a constant speed of 400 rev/min and under a number of stress levels ranging from 100 to 150 MPa. The fatigue behaviour results of the ZA alloys were similar to obtained from the tensile testing. The squeeze cast alloys exhibited good fatigue resistance in proportion to the gravity castings. Metallography examinations showed that the microstructure of the castings differed according to the method of casting used. It was considered that the mechanical properties of the alloys were affected from these micro-structural changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号