首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mechanical and wear properties of severely deformed Al–12Si alloy by equal-channel angular extrusion/pressing (ECAE/P) were investigated. Multi-pass ECAE processing of the as-cast alloy substantially increased both its strength and ductility. The increase in the tensile and yield strength values after six ECAE passes were about 48% and 87%, respectively. The sample after six ECAE passes exhibited 10% elongation before rupture, which was about five times higher than that of the as-cast one. The improvement in both strength and ductility was mainly attributed to the changes of the shape, size and distribution of the eutectic silicon particles along with the breakage and refined of the large α-Al grains during multi-pass ECAE processing. However, the wear test results surprisingly showed that the ECAE process decreased the wear resistance of the alloy, although there was improvement in strength and ductility values. This was mainly attributed to the tribochemical reaction leading to oxidative wear with the abrasive effect in Al–Si alloys during sliding. The oxide layer played a dominant role in determining the wear resistance of the sample in both as-cast and ECAE-processed states, and it masked the effect of strengthening of alloy structure on the wear resistance.  相似文献   

2.
When the geometry of metal deformed part is scaled down to micro-scale, the understanding and prediction of micro deformation behaviour becomes difficult. This is because the conventional material deformation models are no longer valid in micro-scale due to the size effect, which affects the deformation behaviour in micro plastic deformation, and thus leveraging the traditional knowledge of plastic deformation from macro-scale to micro-scale is not meaningful. In this paper, the size effect on micro-scale plastic deformation and frictional phenomenon are investigated via micro-cylindrical compression test, micro-ring compression test and Finite Element (FE) simulation. The experimental results show the occurrence of various size-effect related deformation phenomena, including the decrease of flow stress and the increases of: (a) irrational local deformation, (b) the amount of springback, and (c) the interfacial friction stress with the decreasing specimen size. The research further verifies that the established surface layer models, with the identified surface grain, the internal grain properties and the measured friction coefficients, are able to predict micro deformation behaviour. The research thus provides an in-depth understanding of size effect on deformation and frictional behaviours in micro-scale plastic deformation.  相似文献   

3.
Ballistic response of single or multi-layered metal armor systems subjected to high velocity impact loads was investigated in many experimental, theoretical and numerical studies. In this study, influences of plasma spray surface coating on high velocity impact resistance of AA 6061 T651 aluminum plates were analyzed experimentally. Two different types of surface coating were applied to plates using plasma spray. Using 9.00 mm Parabellum bullets, ballistic performance of both uncoated and coated plates was tested. After the impact tests, penetration depth including plate bending on the front face and bulging on the rear face of the target plate was measured. The improvement on the ballistic resistance of the coated plates was clearly observed. The increase in non-perforating projectile velocity and the decrease in penetration depth were both experienced.  相似文献   

4.
In micro-forming process, the prediction of deformation behavior is difficult as the conventional material constitutive model is no longer valid when the part geometry is scaled down to micro-level. This is caused by the so-called “size-effect”. It is thus necessary to study the size effect and how it affects the deformation behavior in micro-forming process. In this research, a material constitutive model was established based on micro-compression test and its applicability was then studied. To facilitate the research, a flexible tooling set for micro-extrusion was designed and developed first. A modified micro-double cup extrusion test was proposed and the corresponding Finite Element Method (FEM) simulation was conducted. Through experiment and simulation, a set of deformation load curves were generated so as to provide a reference for calibration of flow stress–strain curve in modeling of micro-extrusion process. The applicability of the calibrated flow stress–strain curve was finally validated by the experimental and simulation results of micro-forward extrusion. It is therefore believed that the flow pattern, the material surface constraint and the material deformation mode are critical in determination of material flow stress curve. Furthermore, it was found that the change of cup height ratio of the extruded part is not caused solely by the change of friction when the part size is in micro-scale. The material flow stress significantly affects the cup height ratio. These findings provide a basis in understanding of micro-extrusion process.  相似文献   

5.
T-shape side pressing experiment is a sort of friction test which, recently, is employed for evaluation of friction for bulk metal forming processes. One of important advantages of this experiment, compared with other friction tests such as the ring compression test, is the occurrence of appropriate surface enlargement during the deformation of the specimen. This paper is concerned with experimental and numerical studies on this test, when it is used for some magnesium alloys such as AZ31 and AZ80. Based on the experimental results, it was found that the friction sensitivity of T-shape experiment increased when the die edge radius decreased or the test temperature or ram velocity increased. Good repeatability of this test was also observed during experimental part of this research work. Finally, employing the flow curves gained from the compression tests and friction factors obtained from the T-shape experiments for the finite-element simulations of this test, resulted in a very good agreement between the numerical and experimental load curves.  相似文献   

6.
The demand on micro-parts is significantly increasing in the last decade due to the trend of product miniaturization. When the part size is scaled down to micro-scale, the billet material consists of only a few grains and the material properties and deformation behaviors are quite different from the conventional ones in macro-scale. The size effect phenomena occur in micro-scale plastic deformation or micro-forming and there are still many unknown phenomena related to size effect, including geometry and grain size effects. It is thus critical to investigate the size effect on deformation behavior, especially for the fracture behavior in micro-scale plastic deformation. In this research, tensile test was conducted with annealed pure copper foils with different thicknesses and grain sizes to study the size effects on fracture behavior. It is found that flow stress, fracture stress and strain, and the number of micro-voids on the fracture surface decrease with the decreasing ratio of specimen size to grain size. Based on the experimental results, dislocation density based models which consider the interactive effect of specimen and grain sizes on fracture stress and strain are developed and their accuracies are further verified and validated with the experimental results obtained from this research and prior arts.  相似文献   

7.
From a study of interfacial behavior at deformations up to 60%, a mechanism is proposed for pressure welding of aluminum strips by rolling at warm and cold conditions, where faying surfaces were first degreased and scratch-brushed. According to this mechanism, the scratch-brushed layers fractured coherently after entering roll gap at a reduction of approximately 21%, which is regarding to the threshold deformation for roll bonding of commercial pure (CP) aluminum strips, and some small cracks perpendicular to the rolling direction formed. As deformation proceeds and roll pressure increases, these cracks quickly expanded into fissures. This process allowed the bond to be established between the underlying metals, termed virgin metals, of base metal, which were extruded through the cracks and fissures at the scratch-brushed regions. Moreover by increasing the rolling temperature, threshold deformation required for bond formation decreases.  相似文献   

8.
In this paper, an analogue experiment was carried out to study the effect of processing parameters including deformation temperature, deformation degree, cooling mode and loading pass on the microstructure of transitional region under isothermal local loading forming of TA15 titanium alloy. The volume fraction, grain size and aspect ratio of primary α phase of transitional region were quantitatively characterized. It is found that deformation temperature and deformation degree also have interaction on the microstructure evolution of transitional region under isothermal local loading forming. At a certain deformation degree, primary α grain size increases first and then decreases with increasing temperature. However, primary α grain size varies little with deformation degree at higher temperature (in upper two phase region) but increases firstly and then decreases with deformation degree at lower temperature (in lower two phase region). Primary α aspect ratio increases with deformation degree at lower temperature but varies little at higher temperature. The morphology of transformed structure in β matrix is greatly influenced by deformation temperature and less influenced by deformation degree under air-cooling. The precipitated Widmanstatten α phase in β matrix is in lamellar form and arranges in colonies under air-cooling, but it is in thinner acicular form and distributes disorderly under water quenching. Loading pass has little influence on the morphology of microstructure.  相似文献   

9.
An important limitation of aluminium alloys for mechanical applications is their poor tribological behaviour. In this study, surface treatment by plasma electrolytic oxidation (PEO) has been applied to two widely used aluminium alloys: A359 (hypoeutectic Al–Si–Mg) cast alloy and AA7075 (Al–Zn–Mg–Cu) wrought alloy, in order to improve their wear resistance, under sliding and abrasive wear conditions. The main aim of this work was the comparison of the properties and wear resistance of the oxide layers grown under the same PEO treatment conditions on two different aluminium alloys which might be coupled in engineered components. Significant differences in the phase composition, microstructure and mechanical properties measured by microindentation were observed in the oxide layers grown on the two substrates, and were ascribed to the effects of the different compositions and microstructures of the substrate alloys. Abrasion tests were carried out in a micro-scale abrasion (ball-cratering) test, with both alumina and silicon carbide abrasive particles. The results demonstrated the influence of the abrasive material on wear behaviour: whereas relatively aggressive SiC particles gave comparable results for both PEO treated and untreated samples, with the less aggressive Al2O3 abrasive the wear rates of the PEO treated samples, for both substrates, were significantly lower than those of the untreated substrates. In unlubricated sliding the PEO treatment significantly increase the wear resistance of both the aluminium alloys, at low applied load. In this condition the wear behaviour of the PEO treated alloys is strongly influenced by the stability of a protective Fe–O transfer layer, generated by wear damage of the steel counterpart. Under high applied loads however, the transfer layer is not stable and the hardness of the PEO layer, as well as the load bearing capacity of the substrate, become the main factors in influencing wear resistance.  相似文献   

10.
A new testing procedure, employing transverse load was adopted to investigate the high cycle fatigue behaviour of low pressure cast AZ91 magnesium alloy. The tests were conducted with an electro dynamic shaker system by employing specimens fabricated as per ASTM standard. SN plot was generated from the test results and compared with that of gravity cast AZ91 alloy tested in identical ambience. The influence of transverse load on the fatigue behaviour of these alloys is discussed. As fatigue cracks were found to have initiated in pores in most of the tested samples, pores were assumed as initial cracks as per linear fracture mechanics and the critical stress intensity amplitude (Kcr) was estimated. Structure–fatigue property correlations are discussed using fractographs. Mean stress effect on the fatigue properties and effects of alloying constituents are also discussed.  相似文献   

11.
The 1 wt.%Ca–AZ31 alloy produced by electromagnetic casting (EMC) in presence of electromagnetic stirring (EMS) was extruded and then subjected to the closed-die forging to make a pulley for automobile application. Effective dynamic recrystallization (DRX) took place during the forging process, leading to formation of fully recrystallized grains with the average size of 3–4 μm. High-forging ability and high degree of grain refinement achieved during the forging were attributed to the novel microstructure of the cast composed of small and equiaxed grains with the average size of 50 μm and thin layer (Al, Mg)2 Ca phase at grain boundaries, which would provide more nucleation sites and a faster rate of recrystallization during deformation by forging as compared to that of the conventionally processed cast composed of large size grains and thick layer (Al, Mg)2 Ca phase. The forged pulley exhibited the ultimate tensile strength of 273–286 MPa with tensile elongations of 30%. The present result demonstrates a possibility that EMC + EMS techniques can be used in producing magnesium feed stocks with high-forging ability.  相似文献   

12.
Isothermal forging of a rib–web shape in AZ31B magnesium alloy in the rolling direction was conducted at speeds of 0.01–10 mm s−1 in the temperature range of 300–500 °C with the purpose of validating the results of materials models involving kinetic analysis and processing map. The process was also simulated using finite element method DEFORM to obtain the local values of strain and strain rate. Forging parallel to the rolling direction in the range 375–550 °C and 0.0003–0.3 s−1 under the conditions of dynamic recrystallization (DRX) resulted in a symmetrical cup-shape while at other conditions an elliptical boat-shape was produced with the major axis coinciding with the transverse direction and the minor axis aligned with the normal direction. This anisotropy of flow has been attributed to the strong basal texture in the rolled plate and the dominance of prismatic slip at lower temperatures. In the DRX domain on the other hand, pyramidal slip dominates along with cross-slip as the recovery mechanism, which destroys the initial texture and restores the symmetry of flow. The grain size variation for forgings done in the DRX domain validated the predictions of the material models.  相似文献   

13.
The aim of this study is to evaluate the electrochemical corrosion behavior of a Sn–Ag solder alloy in a 0.5 M NaCl solution at 25 °C as a function of microstructural characteristics. Different microstructure morphologies, which can be found in Sn–Ag solder joints and that are imposed by the local solidification cooling rate, are evaluated and correlated to the resulting scale of the dendritic matrix and the morphology of the Ag3Sn intermetallic compound. Cylindrical metallic molds at two different initial temperatures were employed permitting the effect of 0.15 °C/s and 0.02 °C/s cooling rates on the microstructure pattern to be experimentally examined. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis were used to evaluate the electrochemical parameters. It was found that higher cooling rates during solidification are associated with fine dendritic arrays and a mixture of spheroids and fiber-like Ag3Sn particles which result in better corrosion resistance than coarse dendrite arrays associated with a mixture of fibers and plate-like Ag3Sn morphologies which result from very slow cooling rates.  相似文献   

14.
As the material and manufacturing cost of coins approached or even exceeded the face value of coins over the last 10 years, the needs to develop less-expensive alloys to replace the current coinage materials increased. The objective of this study is to develop new cost-effective alloys with the same vending machine acceptability and similar color tone as Cu–25%Ni coins. Cu–Zn–Ni–Fe and Cu–Zn–Ni–Fe–Cr alloys developed in this study were found to have the electrical conductivity close to and color similar to that of Cu–25Ni. The strengths of the annealed Cu–25.5%Zn–12%Ni–1.5%Fe and Cu–25.5%Zn–12%Ni–1.5%Fe–0.28%Cr alloys were observed to be 451 MPa and 512 MPa, respectively, with excellent ductility, suggesting that these alloys could be substitutive to Cu–25%Ni alloy for other general structural applications as well as coinage application. Both alloys exhibited the typical ductile fracture surfaces. Cu–Zn–Ni–Fe alloy was found to be a better candidate for coins because of the better formability and machinability associated with its moderate strength and excellent ductility.  相似文献   

15.
Electroless nickel coating is an autocatalytic coating whose characteristics are very much dependent on the composition of electroless bath. The present study is an attempt to minimize the friction and wear characteristics of electroless Ni–B coatings simultaneously by optimizing the three coating parameters viz. bath temperature, concentration of reducing agent and concentration of nickel source together with the annealing temperature. Taguchi based grey relational analysis is employed for the optimization of this multiple response problem using an L27 orthogonal array. Analysis of variance reveals that concentration of reducing agent has the maximum contribution in controlling the friction and wear behaviour of Ni–B coating. The interaction between bath temperature and nickel source concentration is also found to possess significant contribution in controlling the friction and wear characteristics. The surface morphology, composition and phase structure analysis are done with the help of scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction analysis (XRD), respectively. Moreover the wear mechanism is studied and found to be in general abrasive in nature.  相似文献   

16.
By integrating the thermomechanically coupled simulation with the mathematically modeling of microstructure evolution using Finite Element Method (FEM), the study of the dynamic recrystallization (DRX) of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy in β-forging process is conducted. Through physical experiment, microstructure characterization and FEM-based microstructure modeling, the DRX behavior of the Ti-alloy in β-forging process is extensively explored. The effects of plastic deformation strain, strain rate and deformation temperature on the DRX of the Ti-alloy in terms of DRX volume fraction, DRX grain size and the average grain size are systematically investigated. The simulation results show that the increase of plastic deformation strain, deformation temperature, and strain rate contributes to the DRX of the alloy. The simulation and experimental results further reveal that the FEM-based microstructure evolution modeling is able to predict the DRX behavior and the microstructure evolution of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy in β-forging process.  相似文献   

17.
At present, the mechanical properties of the Mg–3Sn–2Ca magnesium alloy are not satisfying and further enhance needs to be considered via further alloying/microalloying additions. The effects of Zr addition on the as-cast microstructure and mechanical properties of the alloy were investigated by using optical and electron microscopies, differential scanning calorimetry (DSC) analysis, and tensile and creep tests. The results indicate that adding 0.41, 0.76 or 1.18 wt.% Zr can refine the grains of the alloy, and the primary CaMgSn phases in the Zr-containing alloys are changed from coarse needle-like net to relatively fine short block and/or particle-like shapes. As a result, the tensile and/or creep properties of the Zr-containing alloys are improved. Among the Zr-containing alloys, the alloy with the addition of 0.76 wt.% Zr exhibits the relatively optimum mechanical properties.  相似文献   

18.
The aluminium-based alloys, nowadays, are developed to be used in high performance engine bearings. In this study, new Al-based bearing alloys, which are produced by metal mould casting, were developed; and tribologic properties of these alloys under lubrication were analyzed experimentally. Four different aluminium alloys were carried out on pin on disc wear tester for that purpose. SAE 1040 steel was used as the disc material in the wear tester. Friction tests were carried out at 0.231–1.036 N/mm2 pressures and at 0.6–2.4 m/s sliding speeds. Wear tests were carried out at 1.8 m/s sliding speed and at 70 N normal load. Friction coefficients and weight losses of the samples were determined under various working conditions as a result of the experiments. The morphographies of the worn surfaces were analyzed. Hardness, surface roughness, and surface temperature of the samples were measured. The results showed that the friction and wear behaviors of the alloys have changed according to the sliding conditions. The effects of the elements except aluminium composing alloys on the tribologic properties were analyzed. Al8.5Si3.5Cu alloy has a lower friction coefficient value than other alloys. Al8.5Si3.5Cu and Al15Sn5Cu3Si alloys, on the other hand, have the highest wear resistance. Al15Pb3.7Cu1.5Si1.1Fe alloy is the most worn material; and Al15Pb3.7Cu1.5Si1.1Fe alloy has the highest wear rate. As a result of the evaluations conducted, Al–Sn and Al–Si alloys, which include Si and Sn, can be preferred, among the aluminium alloys that will work under lubrication, as the bearing material.  相似文献   

19.
Since the constitutive information is one of the most important aspects of material deformation analysis, here a new constitutive model is proposed that can investigate the behavior of material during intense deformation better than existent models. The model that is completely based on physical mechanisms can predict all stages of flow stress evolution and also can elucidate the effects of strain and strain rate on flow stress evolution of material during intense plastic deformation. Here as an application, implementation of the constitutive model in finite element method (FEM) is used to compare two methods of sever plastic deformation (SPD) processes of copper sheet; repetitive corrugation and straightening (RCS) and constrained groove pressing (CGP). The modeling results are in good agreement with the experimental data and show that the hardness uniformity and its magnitude for RCSed sheet are higher than that for CGPed sheet. However, the prominence of these processes in strain uniformity depends on pass number.  相似文献   

20.
Plates of Inconel 718 in precipitated state have been subjected to ultrasonic shot peening (USP), varying the distance from the radiating surface of the booster to the sample, the processing time and the material (WC/Co and steel) and number of shot balls, in order to study the effect of these parameters on the final state generated by the USP process. A change to more compressive residual stresses at the surface of the treated parts has been measured in all cases. For higher USP processing times and/or lower booster-sample distances, the degree of plastic deformation in the treated material increases, leading to a change to more compressive surface stresses and a higher density of impact marks in the treated surface. The same occurs when WC/Co balls are used instead of steel balls. The tendency to more compressive stresses reaches a saturation level after a certain processing time, when the system is not able to force the material to continue with more plastic deformation. If a higher quantity of balls is used, there will be less impacts of the shots with the surface and their energy will be lower (due to losses of energy after inelastic collisions). This diminishes the effect of the impacts in introducing compressive stresses and leads to less and shallower impact marks in the treated surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号