首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glass samples of the system (15Li2O–30ZnO–10BaO–(45 − x)B2O3xCuO where x = 0, 5, 10 and 15 mol%) were prepared by using the melt quenching technique. A number of studies, viz. density, differential thermal analysis, FT-IR spectra, a.c. conductivity and dielectric properties (constant εφ, loss tan δ, a.c. conductivity, σac, over a wide range of frequency and temperature) of these glasses were carried out as a function of copper ion concentration. The analysis of the results indicate that the density increases while molar volume decreases with increasing of copper content indicates structural changes of the glass matrix. The glass transition temperature, T g, and crystallization temperature, T c, increase with the variation of concentration of CuO referred to the growth in the network connectivity in this concentration range, while glass-forming ability parameter (T c − T g) decreases with increasing CuO content, indicates an increasing concentration of copper ions that take part in the network-modifying positions. The FT-IR spectra evidenced that the main structural units are BO3, BO4, and ZnO4. The structural changes observed by varying the CuO content in these glasses and evidenced by FTIR investigation suggest that the CuO plays a network modifier role in these glasses while ZnO plays the role of network formers. The dielectric constant decreased with increase in temperature and CuO content. The variation of a.c. conductivity with the concentration of CuO passes through a maximum at 5 mol%. In the high temperature region, the a.c. conduction seems to be connected with the mixed conduction viz., electronic conduction and ionic conduction.  相似文献   

2.
Y2O3–Sm2O3 co-doped ceria (YSDC) powder was synthesized by a gel-casting method using Ce(NO3)3·6H2O, Sm2O3 and Y2O3 as raw materials. Phase structure of the synthesized powders was characterized by X-Ray diffraction analysis. Sinterability of the powders was investigated by testing the relative density and observing the microstructure of the sintered YSDC samples. Electrical conductivity of the sintered YSDC samples was measured using impedance spectra method. Single solid oxide fuel cells based on the YSDC electrolyte were also assembled and tested. The results showed that YSDC powders with single-phase fluorite structure can be obtained by calcining the dried gelcasts at temperature above 800 °C. Average particle size of the YSDC powder is 50–100 nm. Relative density of more than 95% of the theoretical can be achieved by sintering the YSDC compacts at temperature above 1400 °C. The sintered YSDC sample has an ionic conductivity of 4.74 × 10−2 S cm−1 at 800 °C in air. Single fuel cells based on the YSDC electrolyte with 50 μm in thickness were tested using humidified hydrogen as fuel and air as oxidant, and maximum power densities of about 190 and 112 mW cm−2 were achieved at 700 and 600 °C, respectively.  相似文献   

3.
The influence of SrO (0·0–5·0 wt%) on partial substitution of alpha alumina (corundum) in ceramic composition (95 Al2O3–5B2O3) have been studied by co-precipitated process and their phase composition, microstructure, microchemistry and microwave dielectric properties were studied. Phase composition was revealed by XRD, while microstructure and microchemistry were investigated by electron-probe microanalysis (EPMA). The dielectric properties by means of dielectric constant (ε r ), quality factor (Q × f) and temperature coefficient of resonant frequency (τ f ) were measured in the microwave frequency region using a network analyser by the resonance method. The addition of B2O3 and SrO significantly reduced the sintering temperature of alumina ceramic bodies to 1600 °C with optimum density (∼ 4g/cm3) as compared with pure alumina powders recycled from Al dross (3·55g/cm3 sintered at 1700 °C).  相似文献   

4.
Refractive index and molar refraction of Li2O–, Na2O–, CaO–, and BaO–Ga2O3–SiO2 glasses have been used to test the validity of a structural model of silicate glasses containing Ga2O3 glasses. Ga2O3 enters these types of glass in a similar manner as Al2O3. It is assumed that, for (SiO2/Ga2O3) >1 and (Ga2O3/R2O) ≤1, Ga2O3 associates primarily with modifier oxides to form GaO4 units. The rest of modifier oxide forms silicate units with non-bridging oxygen ions. Silicate structural units have the same factors as found for binary alkali- and alkaline earth silicate glasses. Differences between experimental and model values suggest another structure for (Ga2O3/SiO2) ≥1.  相似文献   

5.
High-energy milling was used for production of Cu–Al2O3 composites. The inert gas-atomized prealloyed copper powder containing 2 wt.%Al and the mixture of the different sized electrolytic copper powders with 4 wt.% commercial Al2O3 powders served as starting materials. Milling of prealloyed copper powders promotes formation of nano-sized Al2O3 particles by internal oxidation with oxygen from air. Hot-pressed compacts of composites obtained from 5 and 20 h milled powders were additionally subjected to the high-temperature exposure in argon at 800 °C for 1 and 5 h. Characterization of processed material was performed by optical and scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), microhardness, as well as density and electrical conductivity measurements. Due to nano-sized Al2O3 particles microhardness and thermal stability of composite processed from milled prealloyed powders are higher than corresponding properties of composites processed from the milled powder mixtures. The results were discussed in terms of the effects of different size of starting copper powders and Al2O3 particles on the structure, strengthening of copper matrix, thermal stability and electrical conductivity of Cu–Al2O3 composites.  相似文献   

6.
Thermal properties and crystallization of glasses from PbO–MoO3–P2O5 ternary system were studied in three compositional series (100 − x)[0.5PbO–0.5P2O5]–xMoO3 (A), 50PbO–yMoO3–(50 − y)P2O5 (B), and (50 − z)PbO–zMoO3–50P2O5 (C). Glass transition temperature, crystallization temperature, coefficient of thermal expansion, and dilatation softening temperature of the studied glasses were determined by differential thermal analysis and dilatometry. Crystallization products of annealed glass samples were investigated by X-ray diffraction and Raman spectroscopy. X-ray diffraction analysis of crystallized glasses revealed the formation of PbP2O6, Pb3P4O13, and PbMoO4 in the samples of the B series. In the series A and C in the samples with a high MoO3 content, crystalline compounds of Pb(MoO2)2(PO4)2 and (MoO2)(PO3)2, respectively, were identified. Raman spectra of crystalline samples confirmed the results of X-ray diffraction measurements and provided also information on thermal stability of glasses and formation of glass-crystalline phases in the studied glass series.  相似文献   

7.
A magnetic SO42−/ZrO2–B2O3–Fe3O4 solid superacid catalyst is prepared via a simple chemical co-precipitation approach. The obtained materials were characterized in detailed by X-ray powder diffraction, thermogravimetric analysis–different scanning calorimetry, Fourier transform infrared spectroscopy (FTIR), electron microscopy (SEM and TEM), and Mossbauer spectra. Powder X-ray diffraction patterns show that in this composite oxide the transformation temperature of ZrO2 from tetragonal to monoclinic phase is higher compared to the pristine SO42−/ZrO2 material. The introduction of Fe3O4 endows the superacid with a super-paramagnetic property while in a ferromagnetic state after calcination. The superacid exhibits high catalytic activity in forming ethyl acetate by esterification.  相似文献   

8.
A novel method was utilized to synthesize one-dimensional β-Ga2O3 nanostructures. In this method, β-Ga2O3 nanostructures have been successfully synthesized on Si(111) substrates through annealing sputtered Ga2O3/Mo films under flowing ammonia in a quartz tube. The as-obtained samples were analyzed in detail using the methods of X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDX) attached to the HRTEM instrument. The results show that the formed nanostructures are single-crystalline Ga2O3. The annealing temperature has an evident influence on the morphology of the β-Ga2O3 nanostructures. The growth mechanism of the β-Ga2O3 nanostructures is also discussed by conventional vapor-solid (VS) mechanism.  相似文献   

9.
Nanocrystalline α-Fe2O3 has been prepared on a large-scale by a facile microwave-assisted hydrothermal route from a solution of Fe(NO3)3·9H2O and pentaerythritol. A systematic study of the morphology, crystallinity and oxidation state of Fe using different characterization techniques, such as transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy was performed. It reveals that nanostructured α-Fe2O3 comprises bundles of nanorods with a rhombohedral crystalline structure. The individual nanorod has 8-10 nm diameter and ∼50 nm length. The as-prepared nanostructured α-Fe2O3 (sensor) gives selective response towards humidity. The sensor shows high sensitivity, fast linear response to change in the humidity with almost 100% reproducibility. The sensor works at room temperature and rejuvenates without heat treatment. The as-prepared nanostructured α-Fe2O3 appears to be a promising humidity sensing material with the potential for commercialization.  相似文献   

10.
11.
12.
In this paper, α-Fe2O3 ceramic nanofibers were prepared by electrospinning poly(vinyl alcohol)/Fe (NO3)3·9H2O composite nanofibers and followed by calcination. The morphologies and structures of the as-prepared samples were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The gas sensing properties of the sensor based on the as-prepared α-Fe2O3 nanofibers were investigated in detail. The experimental results exhibited that our product held rapid response-recovery and high sensitivity characteristics to ethanol vapor. The response and recovery time of the sensor to C2H5OH vapor (from 100 to 5000 ppm) are about 3 and 5 s, respectively.  相似文献   

13.
Glass-forming region of Bi2O3–GeO2–TiO2 (BGT) pseudo-ternary system was determined by using melt-quench method. A series of high transparent glass samples were selected and their structural characteristics were investigated by FT-IR and Raman spectra. By employing Z-scan and optical Kerr shutter techniques with femtosecond laser pulses as excitation source, third-order optical nonlinearities (TON) of the BGT glasses as well as the TON response time were investigated at wavelength of 800 nm. The ultrafast nonlinear response and high figure of merit suggest great potentials of BGT glasses in applications of all-optical switching or related optical devices.  相似文献   

14.
Optical and structural properties of Cu-doped β-Ga2O3 films   总被引:1,自引:0,他引:1  
The intrinsic and Cu-doped β-Ga2O3 films were grown on Si and quartz substrates by RF magnetron sputtering in an argon and oxygen mixture ambient. The effects of the Cu doping and the post thermal annealing on the optical and structural properties of the β-Ga2O3 films were studied. The surface morphology, microstructure, optical transmittance, optical absorption, optical energy gap and photoluminescence of the β-Ga2O3 films were significantly changed after Cu-doping. After post thermal annealing, Polycrystalline β-Ga2O3 films were obtained, the transmittance decreased. After Cu-doping, the grain size decreased, the crystal quality deteriorated and the optical band gap shrunk. The UV, blue and green emission bands were observed and discussed. The UV and blue emission were enhanced and a new blue emission peak centred at 475 nm appeared by Cu-doping.  相似文献   

15.
The crystallization behavior and magnetic properties of 10Li2O–9MnO2–16Fe2O3–25CaO–5P2O5–35SiO2 (10LFS) glass have been studied using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) to observe the crystallization behavior and a superconducting quantum interference device (SQUID) for measurements of the magnetic properties. The DTA shows that the 10LFS glass has one broad exothermic peak at approximately 674 °C and one sharp (the highest) exothermic peak at 764 °C. When the 10LFS glass crystallized at 850 °C for 4 h, the crystalline phases identified by XRD were lithium silicate (Li2SiO3), β-wollastonite (β-CaSiO3), lithium orthophosphate (Li3PO4), magnetite (FeFe2O4) and triphylite (Li(Mn0.5Fe0.5)PO4). The SEM surface analysis revealed that the β-wollastonite and lithium silicate have a lath morphology. The TEM microstructure examination showed that the largest FeFe2O3 particles have a size of approximately 0.3 μm. When the 10LFS glass was heat treated at 850 °C for 16 h and a magnetic field of 1000 Oe was applied, a very small remnant magnetic induction of 0.01 emu g1 and a coercive force of 50 Oe were obtained, which revealed an inverse spinel structure.  相似文献   

16.
Glasses with composition (70 − x) B2O3·15Bi2O3·15LiF·xNb2O5 with x = 0–1.0 mol% were prepared by conventional glass-melting technique. The molar volume V m values decrease and the glass transition temperatures T g increase with increase of Nb2O5 content up to 0.2 mol%, which indicates that Nb5+ ions act as a glass former. Beyond 0.2 mol% Nb2O5 the V m increases and the T g decreases, which suggests that Nb5+ ions act as a glass modifier. The FTIR spectra suggest that Nb5+ ions are incorporated into the glass network as NbO6 octahedra, substituting BO4 groups. The temperature dependence of the dc conductivity follows the Greaves variable range hopping model below 454 K, and follows the small polaron hopping model at temperatures >454 K. σ dc, σ ac conductivity and dielectric constant (ε) decrease and activation energy for dc conduction ΔE dc which increases with increasing Nb2O5 content up to 0.2 mol%, whereas σ dc, σ ac and (ε) increase and ΔE dc decreases with increasing Nb2O5 content beyond 0.2 mol%. The impedance spectroscopy shows a single semicircle or arcs which indicate only the ionic conduction mechanism. The electric modulus formalism indicates that the conductivity relaxation is occurring at different frequencies exhibit temperature-independent dynamical process. The (FWHM) of the normalized modulus increases with increase in Nb2O5 content suggesting that the distribution of relaxation times is associated with the charge carriers Li+ or F ions in the glass network.  相似文献   

17.
Glasses were prepared by the melt-quench technique in the K2O–SiO2–Bi2O3–TiO2 (KSBT) system and crystallized bismuth titanate, BiT (Bi4Ti3O12) phase in it by controlled heat-treatment at various temperature and duration. Different physical, thermal, optical, and third-order susceptibility (χ3) of the glasses were evaluated and correlated with their composition. Systematic increase in refractive index (n) and χ3 with increase in BiT content is attributed to the combined effects of high polarization and ionic refraction of bismuth and titanium ions. Microstructural evaluation by FESEM shows the formation of polycrystalline spherical particles of 70–90 nm along with nano-rods of average diameter of 85–90 nm after prolonged heat treatment. A minor increase in dielectric constants (εr) has been observed with increase in polarizable components of BiT in the glasses, whereas a sharp increase in εr in glass–ceramics is found to be caused by the formation of non-centrosymmetric and ferroelectric BiT nanocrystals in the glass matrix.  相似文献   

18.
The low-fired (ZnMg)TiO3–TiO2 (ZMT–TiO2) microwave ceramics using low melting point CaO–B2O3–SiO2 as sintering aids have been developed. The influences of Mg substituted fraction on the crystal structure and microwave properties of (Zn1−x Mg x )TiO3 were investigated. The result reveals that the sufficient amount of Mg (x ≥ 0.3) could inhibit the decomposition of ZnTiO3 effectively, and form the single-phase (ZnMg)TiO3 at higher sintering temperatures. Due to the compensating effect of rutile TiO2f = 450 ppm/°C), the temperature coefficient of resonant frequency (τf) for (Zn0.65Mg0.35)TiO3–0.15TiO2 with biphasic structure was adjusted to near zero value. Further, CaO–B2O3–SiO2 addition could reduce the sintering temperature from 1150 to 950 °C, and significantly improve the sinterability and microwave properties of ZMT–TiO2 ceramics, which is attributed to the formation of liquid phases during the sintering process observed by SEM. The (Zn0.65Mg0.35)TiO3–0.15TiO2 dielectrics with 1 wt% CaO–B2O3–SiO2 sintered at 950 °C exhibited the optimal microwave properties: ε ≈ 25, Q × f ≈ 47,000 GHz, and τf ≈ ± 10 ppm/°C.  相似文献   

19.
The increasing demand in the diverse device applications of transparent conducting oxides(TCOs) requires synthesis of new TCOs of n- or p-type conductivity.This article is about materials engineering of ZnO—SnO2—ln2O3—Ga2O3 to synthesize powders of the quaternary compound Zn2-xSn1-xJnxGaxO4-δ in the stoichiometry of x = 0.2,0.3,and 0.4 by solid state reaction at 1275℃.Lattice parameters were determined by X-ray diffraction(XRD) technique and solubility of ln3+ and Ga3+ in spinel Zn2SnO4 was found at 1275℃.The solubility limit of ln3+ and Ga3+ in Zn2SnO4 is found at below x = 0.4.The optical transmittance approximated by the UV—Vis reflectance spectra showed excellent characteristics while optical band gap was consistent across 3.2 eV with slight decrease along increasing x value.Carrier mobility of the species was considerably higher than the older versions of zinc stannate spinel co-substitutions whereas the carrier concentrations were moderate.  相似文献   

20.
A study of the vibrational density of states (DOS) of γ-Al2O3 is presented. Four structural models from the recent literature are considered: vacant spinel model and three nonspinel models. The vacant spinel and one of the nonspinel models have unit cells with 40 atoms, while the other two models have 160 atoms. The interatomic interactions are computed using classical force fields that include Coulomb and van der Waals attractive interactions, short range repulsive interactions, as well as three-body terms. The oxygen polarizability is included via a core-shell potential. The DOS is compared with ab initio calculations recently published for the vacant spinel model. The classical and ab initio DOS show some differences for frequencies higher than 200 cm−1, the ab initio having more peaks and having a frequency cutoff 100 cm−1 lower than the classical DOS. The DOS of all models present some small differences. While the 160-atoms nonspinel models present a rather structureless DOS, 40-atoms models present peaks and dips relative to the 160-atoms models. The elastic constants of polycrystalline γ-Al2O3 are also estimated using several force fields. In general, the classical force field predict higher elastic moduli than the ab initio method. The infrared spectra of the four models are calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号