首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, experimental data and a simplified vapor–liquid equilibrium (VLE) model for the absorption of CO2 into aqueous solutions of piperazine (PZ) activated 2-amino-2-methyl-1-propanol (AMP) are reported. The purpose of the work was to find the AMP/PZ system with the highest concentration and cyclic capacity, which could be used in the industry without forming solid precipitations at operational temperatures. The effect of the AMP/PZ ratio and the total concentration level of amine was studied. The highest possible ratio of AMP/PZ, which does not form solid precipitates during the absorption of CO2 at 40 °C (40 wt% amine), was identified. Considering the maximum loading found in the screening tests for AMP/PZ (3+1.5 M) and for 30 wt% MEA systems, the AMP/PZ system has about 128% higher specific cyclic capacity if operating between 40 and 80 °C, and almost twice the CO2 partial pressure at 120 °C compared to MEA.  相似文献   

2.
To enhance the absorption rate for CO2 and SO2, aqueous ammonia (NH3) solution was added to an aqueous 2-amino-2-methyl-1-propanol (AMP) solution. The simultaneous absorption rates of AMP and a blend of AMP+ NH3 for CO2 and SO2 were measured by using a stirred-cell reactor at 303 K. The process operating parameters of interest in this study were the solvent and concentration, and the partial pressures of CO2 and SO2. As a result, the addition of NH3 solution into aqueous AMP solution increased the reaction rate constants of CO2 and SO2 by 144 and 109%, respectively, compared to that of AMP solution alone. The simultaneous absorption rate of CO2/SO2 on the addition of 1 wt% NH3 into 10 wt% AMP at a p A1 of 15 kPa and p A2 of 1 kPa was 5.50×10−6 kmol m−2 s−1, with an increase of 15.5% compared to 10 wt% AMP alone. Consequently, the addition of NH3 solution into an aqueous AMP solution would be expected to be an excellent absorbent for the simultaneous removal of CO2/SO2 from the composition of flue gas emitted from thermoelectric power plants.  相似文献   

3.
Changes in the CO2 absorption rates and capacities of the absorbent 2-amino-2-methyl-1-propanol (AMP), blended with NH3 and other additives, were investigated toward performance improvement. The NH3-blended absorbent removed CO2 more efficiently than the AMP absorbent alone. However, absorbent loss through NH3 evaporation was observed under these conditions. A second absorbent, the tertiary amine triethanolamine (TEA), which has a low vapor pressure, was selected and blended with the NH3/AMP system to reduce NH3 evaporation. Its effects on NH3 loss and the absorption rate and capacity of the NH3/AMP system were investigated, and the optimum blending ratios were determined. In addition, the absorbent blend at the optimum blending ratio was compared to AMP alone and the commercially available absorbent monoethanolamine at the same weight ratio. The thermal stabilities of the absorbents, under conditions used in the CO2 absorption process, were compared by thermogravimetric analysis.  相似文献   

4.
The Inter-governmental Panel on Climate Change (IPCC) reported that human activities result in the production of greenhouse gases (CO2, CH4, N2O and CFCs), which significantly contribute to global warming, one of the most serious environmental problems. Under these circumstances, most nations have shown a willingness to suffer economic burdens by signing the Kyoto Protocol, which took effect from February 2005. Therefore, an innovative technology for the simultaneously removal carbon dioxide (CO2) and nitrogen dioxide (NO2), which are discharged in great quantities from fossil fuel-fired power plants and incineration facilities, must be developed to reduce these economical burdens. In this study, a blend of AMP and NH3 was used to achieve high absorption rates for CO2, as suggested in several publications. The absorption rates of CO2, SO2 and NO2 into aqueous AMP and blended AMP+NH3 solutions were measured using a stirred-cell reactor at 293, 303 and 313 K. The reaction rate constants were determined from the measured absorption rates. The effect of adding NH3 to enhance the absorption characteristics of AMP was also studied. The performance of the reactions was evaluated under various operating conditions. From the results, the reactions with SO2 and NO2 into aqueous AMP and AMP+NH3 solutions were classified as instantaneous reactions. The absorption rates increased with increasing reaction temperature and NH3 concentration. The reaction rates of 1, 3 and 5 wt% NH3 blended with 30 wt% AMP solution with respect to CO2/SO2/NO2 at 313 K were 6.05~8.49×10?6, 7.16–10.41×10?6 and 8.02~12.0×10?6 kmol m?2s?1, respectively. These values were approximately 32.3–38.7% higher than with aqueous AMP solution alone. The rate of the simultaneous absorption of CO2/SO2/NO2 into aqueous AMP+NH3 solution was 3.83–4.87×10?6 kmol m?2s?1 at 15 kPa, which was an increase of 15.0–16.9% compared to 30 wt% AMP solution alone. This may have been caused by the NH3 solution acting as an alternative for CO2/SO2/NO2 controls from flue gas due to its high absorption capacity and fast absorption rate.  相似文献   

5.
To examine the characteristics of absorption and regeneration, the simultaneous removal efficiency of carbon dioxide/sulfur dioxide (CO2/SO2), the CO2 absorption amount, and the CO2 loading value of an ammonia (NH3) solution added to 2-amino-2-methyl-1-propanol (AMP) were investigated using the continuous absorption and regeneration process. The performances of this system, such as the removal efficiency of CO2 and SO2, absorption amount, and CO2 loading, were evaluated under various operating conditions. Based on the experimental study, the optimum conditions were a liquid circulation rate of 90 mL/min and gas flow rate of 7.5 L/min. The addition of NH3 into aqueous AMP solution increased the absorption rate and loading ratio of CO2 and raised the removal efficiencies of CO2 and SO2 to over 90% and over 98%, respectively.  相似文献   

6.
In this work new experimental data on the rate of absorption of CO2 into piperazine (PZ) activated concentrated aqueous solutions of 2-amino-2-methyl-1-propanol (AMP) over the temperature range 303–323 K are presented. The absorption experiments have been carried out in a wetted wall contactor over CO2 partial pressure range of 5–15 kPa. PZ is used as a rate activator with a concentration ranging from 2 to 8 wt% keeping the total amine concentration in the solution at 40 wt%. The physical properties such as density and viscosity of concentrated aqueous AMP+PZ, as well as physical solubility of CO2 in concentrated aqueous AMP+PZ, are also measured. New experimental data on vapor liquid equilibrium (VLE) of CO2 in these concentrated aqueous solutions of AMP+PZ in the temperature range of 303–323 K have also been presented. The VLE measurements are carried out in an equilibrium cell in CO2 pressure range of 0.1–140 kPa. A thermodynamic model based on electrolyte non-random two-liquid (eNRTL) theory is used to represent the VLE of CO2 in aqueous AMP+PZ. Liquid phase speciations are estimated considering the nonideality of concentrated solutions of the amines and the calculated activity coefficients by eNRTL model. The CO2 absorption in the aqueous amine solutions is described by a combined mass transfer-reaction kinetics model developed according to Higbie's penetration theory. The model predictions have been found to be in good agreement with the experimental results of the rates of absorptions of CO2 into aqueous AMP+PZ.  相似文献   

7.
The chemical capture of CO2 by either aqueous Na2CO3 and K2CO3 or nonaqueous solutions of the amines 2‐amino‐2‐methyl‐1‐propanol (AMP) or piperazine (PZ) is described. The captured CO2 is stored as solid NaHCO3, KHCO3, and AMP or PZ carbamates. Solid NaHCO3 and KHCO3 are decomposed at 200 °C and 250 °C, respectively, to regenerate the carbonates for their reuse. In the experiments with AMP or PZ, the solid carbamates are decomposed at 80 °C–110 °C to regenerate the free amines. The absence of water in the desorption‐regeneration step is intriguing and could have the potential of reducing one of the major disadvantages of aqueous absorbents, namely the energy cost of the regeneration step and amine degradation, yet preserving the efficiency of the absorption in the liquid phase.  相似文献   

8.
The estimation of regeneration heat of absorbent is important because it is a key factor that has an effect on the process efficiency. In this study, thermal stability and regeneration heat of aqueous amine solutions such as monoethanolamine (MEA), 2-amino-2-methyl-1-propanol (AMP), N-methyldiethanolamine (MDEA), and 1,8-diamino-pmenthane (KIER-C3) were investigated by using TGA-DSC analysis. The thermal characteristics of the fresh and CO2 rich amine solutions were estimated. The CO2 rich amine solutions were obtained by VLE experiments at T=40 °C. The regeneration heat of aqueous MEA solution was 76.991–66.707 kJ/mol-CO2, which is similar to heat of absorption. The reproducibility of the results was obtained. The regeneration heat of aqueous KIER-C3 20 wt% solution (1.68 M) was lower than that of aqueous MEA 30 wt% solution (4.91 M). Therefore, the KIER-C3 can be used as an effective absorbent for acid gas removal.  相似文献   

9.
Amine is one of candidate solvents that can be used for CO2 recovery from the flue gas by conventional chemical absorption/desorption process. In this work, we analyzed the impact of different amine absorbents and their concentrations, the absorber and stripper column heights and the operating conditions on the cost of CO2 recovery plant for post-combustion CO2 removal. For each amine solvent, the optimum number of stages for the absorber and stripper columns, and the optimum absorbent concentration, i.e., the ones that give the minimum cost for CO2 removed, is determined by response surface optimization. Our results suggest that CO2 recovery with 48 wt% DGA requires the lowest CO2 removal cost of $43.06/ton of CO2 with the following design and operating conditions: a 20-stage absorber column and a 7-stage stripper column, 26 m3/h of solvent circulation rate, 1903 kW of reboiler duty, and 99°C as the regenerator-inlet temperature.  相似文献   

10.
This work presents an experimental and theoretical investigation of the simultaneous absorption of CO2 and H2S into aqueous blends of 2-amino-2-methyl-1-propanol (AMP) and diethanolamine (DEA). The effect of contact time, temperature and amine concentration on the rate of absorption and the selectivity were studied by absorption experiments in a wetted wall column at atmospheric pressure and constant feed gas ratio. The diffusion-reaction processes for CO2 and H2S mass transfer in blended amines are modeled according to Higbie's penetration theory with the assumption that all reactions are reversible. The blended amine solvent (AMP+DEA+H2O) has been found to be an efficient mixed solvent for simultaneous absorption of CO2 and H2S. By varying the relative amounts of AMP and DEA the blended amine solvent can be used as an H2S-selective solvent or an efficient solvent for total removal of CO2 and H2S from the gas streams. Predicted results, based on the kinetics-equilibrium-mass transfer coupled model developed in this work, are found to be in good agreement with the experimental results of rates of absorption of CO2 and H2S into (AMP+DEA+H2O) of this work.  相似文献   

11.
In this work, new experimental data on the rate of absorption of CO2 into piperazine (PZ) activated aqueous solutions of 2-amino-2-methyl-1-propanol (AMP) are reported. The absorption experiments using a wetted wall contactor have been carried out over the temperature range of 298-313 K and CO2 partial pressure range of 2-14 kPa. PZ is used as a rate activator with a concentration ranging from 2 to 8 wt%, keeping the total amine concentration in the solution at 30 wt%. The CO2 absorption into the aqueous amine solutions is described by a combined mass transfer-reaction kinetics-equilibrium model, developed according to Higbie's penetration theory. Parametric sensitivity analysis is done to determine the effects of possible errors in the model parameters on the accuracy of the calculated CO2 absorption rates from the model. The model predictions have been found to be in good agreement with the experimental results of rates of absorption of CO2 into aqueous (PZ+AMP). The good agreement between the model predicted rates and enhancement factors and the experimental results indicates that the combined mass transfer-reaction kinetics-equilibrium model with the appropriate use of model parameters can effectively represent CO2 mass transfer in PZ activated aqueous AMP solutions.  相似文献   

12.
This work presents an experimental and theoretical investigation of CO2 absorption into aqueous blends of 2-amino-2-methyl-1-propanol (AMP) and diethanolamine (DEA). The CO2 absorption into the amine blends is described by a combined mass transfer-reaction kinetics-equilibrium model, developed according to Higbie's penetration theory. The model predictions have been found to be in good agreement with the experimental rates of absorption of CO2 into (AMP+DEA+H2O). The good agreement between the model predicted rates and enhancement factors and the experimental results indicate that the combined mass transfer-reaction kinetics-equilibrium model with the appropriate use of model parameters can effectively represent CO2 mass transfer for the aqueous amine blends AMP/DEA.  相似文献   

13.
High heat duty is an urgent challenge for industrial applications of amine-based CO2 capture. The temperature (>110°C) of carbamate breakdown in amine regeneration requires large energy consumption. In this work, we report a novel, stable, efficient, and inexpensive Ni-HZSM-5 catalyst to improve the CO2 desorption rate and reduce the heat duty. The impregnation method was applied for varying nickel content in the catalysts from 2.16 to 9.80 wt% in HZSM-5. The catalysts were characterized by scanning electron microscope, X-ray powder diffraction, N2 adsorption–desorption, inductively coupled plasma-optical emission spectrometry, ultraviolet-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, NH3-temperature programmed desorption (TPD), Infrared spectroscopy of pyridine adsorption, and Fourier transform infrared spectroscopy. The catalytic performance was evaluated by CO2 desorption of rich amine solvent at 90°C. It was found that the introduction of nickel increased the acid sites of catalysts compared with parent HZSM-5. This phenomenon plays a key role on improving the CO2 desorption rate. The density functional theory (DFT) calculations successfully explain the catalytic performance. The catalytic activity associates with the combined properties of MSA × B/L × Ni2+. The 7.85-Ni-HZ catalyst presents an excellent catalytic activity for the CO2 desorption: it increases the amount of desorbed CO2 up to 36%, reduces the relative heat duty by 27.07% with the same reaction time, and possesses high stability during five cyclic tests. A possible catalytic mechanism for the Ni-HZSM-5 catalysts through assisting carbamate breakdown and promoting CO2 desorption is proposed based on experimental results and theoretical calculations. Therefore, the results present that the 7.85-Ni-HZ catalyst significantly accelerates the protons transfer in CO2 desorption and can potentially apply in industrial CO2 capture.  相似文献   

14.
The performance of a proprietary solvent (CAER-B2), an amine-carbonate blend, for the absorption of CO2 from coal-derived flue gas is evaluated and compared with state-of-the-art 30 wt% monoethanolamine (MEA) under similar experimental conditions in a 0.1 MWth pilot plant. The evaluation was done by comparing the carbon capture efficiency, the overall mass transfer rates, and the energy of regeneration of the solvents. For similar carbon loadings of the solvents in the scrubber, comparable mass transfer rates were obtained. The rich loading obtained for the blend was 0.50 mol CO2/mol amine compared to 0.44 mol CO2/mol amine for MEA. The energy of regeneration for the blend was about 10% lower than that of 30 wt% MEA. At optimum conditions, the blend shows promise in reducing the energy penalty associated with using industry standard, MEA, as a solvent for CO2 capture.  相似文献   

15.
This paper deals with the modeling and optimization of the chemical absorption process to CO2 removal using monoethanolamine (MEA) aqueous solution. Precisely, an optimization mathematical model is proposed to determine the best operating conditions of the CO2 post-combustion process in order to maximize the CO2 removal efficiency. Certainly, the following two objective functions are considered for maximization: (a) ratio between the total absorbed CO2 and the total heating and cooling utilities and (b) ratio between total absorbed CO2 and the total amine flow-rate.Temperature, composition and flow-rate profiles of the aqueous solution and gas streams along the absorber and regenerator as well as the reboiler and condenser duties are considered as optimization variables. The number of trays or height equivalent to a theoretical plate (HETP) on the absorber and regenerator columns as well as the CO2 composition in flue gas are treated as model parameters. Correlations used to compute physical-chemical properties of the aqueous amine solution are taken from different specialized literature and are valid for a wide range of operating conditions. For the modeling, both columns (absorber and regenerator) are divided into a number of segments assuming that liquid and gas phases are well mixed.GAMS (General Algebraic Modeling System) and CONOPT are used, respectively, to implement and to solve the resulting mathematical model.The robustness and computational performance of the proposed model and a detailed discussion of the optimization results will be presented through different case studies. Finally, the proposed model cannot only be used as optimizer but also as a simulator by fixing the degree of freedom of the equation system.  相似文献   

16.
The reaction kinetics of the absorption of CO2 into aqueous solutions of piperazine (PZ) and into mixed aqueous solutions of 2-amino-2-methyl-l-propanol (AMP) and PZ were investigated by wetted wall column at 30-40 °C. The physical properties such as density, viscosity, solubility, and diffusivity of the aqueous alkanolamine solutions were also measured. The N2O analogy was applied to estimate the solubilities and diffusivities of CO2 in aqueous amine systems. Based on the pseudo-first-order for the CO2 absorption, the overall pseudo first-order reaction rate constants were determined from the kinetic measurements. For CO2 absorption into aqueous PZ solutions, the obtained second-order reaction rate constants for the reaction of CO2 with PZ are in a good agreement with the results of Bishnoi and Rochelle (Chem. Eng. Sci. 55 (2000) 5531). For CO2 absorption into mixed aqueous solutions of AMP and PZ, it was found that the addition of small amounts of PZ to aqueous AMP solutions has significant effect on the enhancement of the CO2 absorption rate. For the CO2 absorption reaction rate model, a hybrid reaction rate model, a second-order reaction for the reaction of CO2 with PZ and a zwitterion mechanism for the reaction of CO2 with AMP was used to model the kinetic data. The overall absolute percentage deviation for the calculation of the apparent rate constant kapp is 7.7% for the kinetics data measured. The model is satisfactory to represent the CO2 absorption into mixed aqueous solutions of AMP and PZ.  相似文献   

17.
Among numerous techniques existing for reducing CO2 emissions, CO2 capture by absorption in aqueous alkanolamine solutions was specifically studied in this work. For the choice of the adequate amine solution, two major criteria must be taken into account: absorption performances (higher with primary and secondary amines) and energy costs for solvent regeneration (more interesting with tertiary and sterically hindered amines). The different types of amines can also be mixed in order to combine the specific advantages of each type of amines, an activation phenomenon being observed. Aqueous solutions of (piperazinyl‐1)‐2‐ethylamine (PZEA, a polyamine known as absorption activator) and 1‐amino‐2‐propanol (AMP, a sterically hindered amine), pure or mixed with other amines, are experimentally compared with respect to CO2 removal performances by means of absorption test runs achieved in a special gas‐liquid contactor at 25 °C. The positive impact of addition of PZEA to monoethanolamine (MEA), N‐methyldiethanolamine (MDEA), and AMP solutions was clearly highlighted. The absorption performances have also been satisfactorily simulated with coherent physicochemical data.  相似文献   

18.
A semi-empirical gas-liquid equilibrium model for the absorption of CO2 in aqueous 3M AMP (2-amino-2-methyl-1-propanol) is presented. It applies to high CO2 loadings (y > 0.5) in the temperature range between 20 and 50 °C, and is based on experimental solubility and pH determinations. For a given amine concentration, it yields the equilibrium partial pressure of CO2 as a function of only two variables: the CO2 loading and temperature. The model correlates the expressions for the chemical equilibria involved as follows: p = m y × 10x, where p is the equilibrium partial pressure, x = logK - pH, m is the amine molarity, y the CO2 loading, and K is a parameter involving Henry's law constant, H, and the first dissociation constant, K1, of carbonic acid. pH is found to depend on both temperature and CO2 loading while logK depends only on the CO2 loadIng. Correlations for pH and logK are presented. The model fits own data for 3M AMP very well as well as the equilibrium data found in recent literature.  相似文献   

19.
The absorption of CO2 from a mixture of CO2/N2 gas was carried out using a flat-stirred vessel and the polytetrafluoroethylene hollow fiber contained aqueous 2-amino-2-methyl-1-propanol (AMP) solution. The reaction of CO2 with AMP was confirmed to be a second order reversible reaction with fast-reaction region. The mass transfer resistance in the membrane side obtained from the comparison of the measured absorption rates of CO2 in a hollow fiber contained liquid membrane with a flat-stirred vessel corresponded to about 90% of overall-mass-transfer resistance. The mass transfer coefficient of hollow fiber phase could be evaluated, which was independent of CO2 loading.  相似文献   

20.
Tetraethylenepentamine (TEPA) was employed to functionalize the large-pore mesoporous silica (denoted MSU-J) with 3D worm-hole framework structures which was prepared through a supramolecular hydrogen-bonding assembly pathway from low-cost H2NCH(CH3)CH2[OCH2CH(CH3)]33NH2 (D2000) as structure-directing porogens and tetraethylorthosilioate as the silica source for capturing CO2. The resultant adsorbents were characterized by FT-IR, Transmission electron microscopy (TEM), N2 adsorption/desorption and thermogravimetric analysis. Textural properties, elemental analysis and TEM measurement of the samples showed a severe pore filling of MSU-J as TEPA loading was increased to 70 wt%. CO2 adsorption isotherms measured at different temperatures revealed the optimal adsorption temperature is 25 °C. The adsorption capacity of MSU-J with different TEPA loading contents was calculated. As a result, 50 wt% of TEPA supported on as-synthesized MSU-J achieved the highest capacity with the value of 164.3 mg/g under the conditions of 99.99 % CO2 at 25 °C and 0.1 MPa. Repeated adsorption/desorption cycles revealed that amine-impregnated materials was very efficient for less apparent decrease in CO2 adsorption capacity even after 6 adsorption–regeneration cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号