共查询到16条相似文献,搜索用时 75 毫秒
1.
基于小波包与隐马尔可夫的矿井提升机主轴故障诊断 总被引:1,自引:0,他引:1
为解决当前矿井提升机主轴故障数据提取困难且诊断方法存在易受干扰、误差大、准确度低等缺点,设计了基于小波包与隐马尔可夫(HMM)的矿井提升机主轴故障诊断模型。该模型预先把主轴振动信号用小波包分解来获取小波包能量,再把高能量频带CEEMD分解,选取相关系数满足条件的IMF分量完成信号重构,通过重构信号来获得特征参数并构建特征向量,然后对每种故障完成HMM训练,构建HMM故障识别库,并把测试样本送入库中完成测试,从而测试模型的准确度。测试数据表明了基于小波包与HMM的故障诊断模型,准确度高、误差小、抗干扰能力强,比较适用于故障诊断。 相似文献
2.
3.
4.
小波包分析由于能对信号高、低频部分局部细化并保留原信号的时域特征,因而具有良好的时频局部化特性,能对非平稳信号进行有效识别,达到故障诊断的目的,在故障诊断领域得到越来越广泛的应用。风机运行时产生的信号大多是非平稳信号,将小波包分析技术用于其故障诊断具有实际意义。 相似文献
5.
6.
7.
8.
9.
10.
泵阀作为隔膜泵的重要组成部分,卡阀故障时有发生,给生产带来了很大损失。本文采用小波包频带分解技术,有效提取了泵阀的卡阀故障。这项技术应用在大型隔膜泵上,具有一定的经济意义. 相似文献
11.
12.
以冶金企业的轧钢设备中典型关键设备减速机为具体研究对象,对减速机进行状态监测与故障诊断,并将三维小波变换与小波包降噪残差信号频谱分析相结合,利用残差信号的频率特征信息,有效地提取了减速机故障频率。 相似文献
13.
14.
将小波包分析与距离判别分析法相结合的方法应用于滚动轴承故障诊断问题中。利用小波包分析技术提取了滚动轴承典型故障的振动加速度信号的状态特征向量,选用此特征向量作为距离判别分析模型的判别因子,以滚动轴承故障实测模拟数据作为学习样本进行训练,通过分析计算,建立了相应线性判别函数,并利用回代估计方法进行检验。研究结果表明:这种新模型判别能力强,交叉确认估计的误判率为0,不需要优化网络结构,是解决滚动轴承故障诊断的一种有效方法。 相似文献
15.
将小波包分析与Bayes判别分析法相结合的方法应用于矿用通风机故障诊断问题中。利用小波包分析技术提取了矿用通风机不同工作状态的特征向量,选用此特征向量作为Bayes判别分析模型的判别因子,以矿用通风机故障实测模拟数据作为学习样本进行训练,通过分析计算,建立了相应线性判别函数,并利用回代估计方法进行检验。研究结果表明:这种新模型判别能力强,交叉确认估计的误判率为0,不需要优化网络结构,是解决矿用通风机故障诊断的一种有效方法。 相似文献
16.