首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Based on an extensive literature analysis, this paper examines user‐centredness in the context of systems development as a multidimensional concept composed of four aspects: user focus, work‐centredness, user involvement and system personalization. Each dimension loads user‐centredness with different meanings. The four dimensions can be used for evaluating systems development methods and approaches as to what extent and in what sense they adhere to the ideals of user‐centredness. To illustrate this, the dimensions are applied to the analysis of four allegedly user‐centred systems development methods: Goal Directed Interaction Design, Contextual Design, Scenario‐Based Design and Human‐Centred Systems Development Life Cycle. The analysis shows considerable variation in how these methods address the four dimensions of user‐centredness.  相似文献   

2.
In this paper we address an open key issue during the development of web-based educational systems. In particular, we provide an educational-oriented approach for building personalised e-learning environments that focuses on putting the learners' needs in the centre of the development process. Our approach proposes user centred design methodologies involving interdisciplinary teams of software developers and domain experts. It is illustrated in an adaptive e-learning system, where a MOOC (Massive Open Online Course) was taken by nearly 400 learners. In particular, we report where user centred design methods can be applied along the e-learning life cycle to designing and evaluating personalisation support through recommendations in learning management systems.  相似文献   

3.
    
Digital educational games research tends to lack ecological validity by not adequately taking into account the views and perspectives of children and young people with autism spectrum disorders (ASD). This paper is a pilot study that explores and analyses an academic‐based educational game that was co‐designed with and for young people with ASD. The serious game aims to help the players learn Geography‐specific knowledge and integrates several strategic features so that users can collaborate together against the computer or compete against each other. The educational game was evaluated over 5 sessions by 3 peer teams from 2 different special educational institutions, involving a total of 6 students with ASD. The participants were positive about their enjoyment, motivation, and social engagement. The results showed that the players' level of competitiveness not only influenced the experience within the game but also the interaction within the peer teams. The game mechanisms did help the participants with ASD increase their knowledge in Geography content. The main conclusion is that there are considerable benefits of including children with ASD in the design process and future research should explore more fully on how their involvement can enhance curriculum‐based learning as well as social engagement within the classroom.  相似文献   

4.

Usability Context Analysis (UCA) suggests the use of task analysis in order to characterize the user's requirements of a product. This paper shows that a task analysis is a necessary (but not sufficient) part of a usability context analysis. Further, it is argued that it is necessary to carry out the task analysis to sufficient depth to establish fitness for purpose of the product under test. In addition, the analyst should have some knowledge of the application domain so that from various task sequences, that giving the best user-product task match can be used. The paper indicates by using an example of an echosounder that discrepancies of use can be highlighted through this task-based approach to usability context analysis.  相似文献   

5.
Efficient Adaptive-Support Association Rule Mining for Recommender Systems   总被引:25,自引:0,他引:25  
Collaborative recommender systems allow personalization for e-commerce by exploiting similarities and dissimilarities among customers' preferences. We investigate the use of association rule mining as an underlying technology for collaborative recommender systems. Association rules have been used with success in other domains. However, most currently existing association rule mining algorithms were designed with market basket analysis in mind. Such algorithms are inefficient for collaborative recommendation because they mine many rules that are not relevant to a given user. Also, it is necessary to specify the minimum support of the mined rules in advance, often leading to either too many or too few rules; this negatively impacts the performance of the overall system. We describe a collaborative recommendation technique based on a new algorithm specifically designed to mine association rules for this purpose. Our algorithm does not require the minimum support to be specified in advance. Rather, a target range is given for the number of rules, and the algorithm adjusts the minimum support for each user in order to obtain a ruleset whose size is in the desired range. Rules are mined for a specific target user, reducing the time required for the mining process. We employ associations between users as well as associations between items in making recommendations. Experimental evaluation of a system based on our algorithm reveals performance that is significantly better than that of traditional correlation-based approaches.  相似文献   

6.
教育数据挖掘(Educational Data Mining,EDM)是一门涉及计算机科学、教育学、统计学的交叉学科。它致力于探索来自教育环境的独特数据,其目的是更好地了解学生及其学习环境,从而提高教育成效。为了深入分析EDM的研究进展,从Web of Science库相关文献、国内外研究现状对EDM进行了系统性梳理,介绍了EDM的工作流程,把数据挖掘技术在教育领域的应用归纳为4类,对处于快速发展阶段的一些EDM典型案例进行了统计分析并讨论了其不足与发展趋势。  相似文献   

7.
    
Attaining those skills that match labor market demand is getting increasingly complicated, not in the last place in engineering education, as prerequisite knowledge, skills, and abilities are evolving dynamically through an uncontrollable and seemingly unpredictable process. Anticipating and addressing such dynamism is a fundamental challenge to twenty-first century education. The burgeoning availability of data, not only on the demand side but also on the supply side (in the form of open educational resources) coupled with smart technologies, may provide a fertile ground for addressing this challenge. In this paper, we propose a novel, Artificial Intelligence (AI) driven approach to the development of an open, personalized, and labor market oriented learning recommender system, called eDoer. We discuss the complete system development cycle starting with a systematic user requirements gathering, and followed by system design, implementation, and validation. Our recommender prototype (1) derives the skill requirements for particular occupations through an analysis of online job vacancy announcements; (2) decomposes skills into learning topics; (3) collects a variety of open online educational resources that address those topics; (4) checks the quality of those resources and topic relevance with three intelligent prediction models; (5) helps learners to set their learning goals towards their desired job-related skills; (6) recommends personalized learning pathways and learning content based on individual learning goals; and (7) provides assessment services for learners to monitor their progress towards their desired learning objectives. Accordingly, we created a learning dashboard focusing on three Data Science related jobs and conducted an initial validation of eDoer through a randomized experiment. Controlling for the effects of prior knowledge as assessed by means of a pretest, the randomized experiment provided tentative support for the hypothesis that learners who engaged with personal recommendations provided by eDoer to acquire knowledge of basic statistics, attained higher scores on the posttest than those who did not. The hypothesis that learners who received personalized content in terms of format, length, level of detail, and content type, would achieve higher scores than those receiving non-personalized content was not supported.  相似文献   

8.
    
The recommendation in information systems is a specific form of information filtering that aims to present the relevant information interesting the user. This technique is used in different contexts such as social networking, e‐commerce and information retrieval. Generally, existing recommender system techniques implement collaborative filtering by deducing a part of user interests from the preferences of other users with similar profiles. Many techniques can be used to implement Collaborative Filtering such as Bayesian Networks, latent semantic, and clustering. We present in this work a novel clustering approach using a modified partitional algorithm. We propose a user model that integrates the relevant user information and a clustering algorithm that generates groups of similar user profiles by implementing a profile similarity function. The proposed approach is then evaluated based on a set of user profiles data corresponding to the context of an e‐commerce website.  相似文献   

9.
Recommender Systems Research: A Connection-Centric Survey   总被引:4,自引:0,他引:4  
Recommender systems attempt to reduce information overload and retain customers by selecting a subset of items from a universal set based on user preferences. While research in recommender systems grew out of information retrieval and filtering, the topic has steadily advanced into a legitimate and challenging research area of its own. Recommender systems have traditionally been studied from a content-based filtering vs. collaborative design perspective. Recommendations, however, are not delivered within a vacuum, but rather cast within an informal community of users and social context. Therefore, ultimately all recommender systems make connections among people and thus should be surveyed from such a perspective. This viewpoint is under-emphasized in the recommender systems literature. We therefore take a connection-oriented perspective toward recommender systems research. We posit that recommendation has an inherently social element and is ultimately intended to connect people either directly as a result of explicit user modeling or indirectly through the discovery of relationships implicit in extant data. Thus, recommender systems are characterized by how they model users to bring people together: explicitly or implicitly. Finally, user modeling and the connection-centric viewpoint raise broadening and social issues—such as evaluation, targeting, and privacy and trust—which we also briefly address.  相似文献   

10.
由于用户评分数据在极端稀疏的情况下会导致传统协同过滤算法的推荐质量下降,针对该问题,提出一种基于项目分类和用户群体兴趣的协同过滤算法。该算法根据项目类别信息对项目进行分类,相同分类的项目具有较高的相似性;利用评分数据计算各个项目分类上的用户相似性矩阵,并计算用户群体在各个分类上的兴趣,通过二者构造加权的用户相似性矩阵;利用用户加权相似性矩阵寻找用户的最近邻以获得最佳的推荐效果。实验结果表明,该算法能有效提高推荐质量。  相似文献   

11.
    
Recommender systems have become a core part of the retail experience. Retailers often rely on recommender systems to help them drive more conversions through targeted communication and advertisements. However, recommender systems are not one size fits all. Specialized retailers require specialized recommender systems to consider various features, attributes, and dynamics about the product category. In this paper, we have proposed a novel fruit recommender system that generates dynamic recommendations while remediating the problem of data sparsity. We have developed a novel fruit recommender system that considers the temporal dynamics in the fruit market, like price fluctuations, fruit seasonality, and quality variations that occur throughout the year. To perform this task, we have used Recurrent Recommender Network (RRN), which uses the deep learning method Long Short-Term Memory (LSTM) to implement the system model. To ensure that our work and results obtained are practical, we have worked in a real-world setting, by tying up with a specialty fruit retailer based in New Delhi to get the real-world Point-of-Sale (POS) data of consumers. The result of the study suggests our algorithm performs better than other benchmark algorithms along NDCG and RMSE metrics.  相似文献   

12.
E-Commerce Recommendation Applications   总被引:38,自引:0,他引:38  
Recommender systems are being used by an ever-increasing number of E-commerce sites to help consumers find products to purchase. What started as a novelty has turned into a serious business tool. Recommender systems use product knowledge—either hand-coded knowledge provided by experts or mined knowledge learned from the behavior of consumers—to guide consumers through the often-overwhelming task of locating products they will like. In this article we present an explanation of how recommender systems are related to some traditional database analysis techniques. We examine how recommender systems help E-commerce sites increase sales and analyze the recommender systems at six market-leading sites. Based on these examples, we create a taxonomy of recommender systems, including the inputs required from the consumers, the additional knowledge required from the database, the ways the recommendations are presented to consumers, the technologies used to create the recommendations, and the level of personalization of the recommendations. We identify five commonly used E-commerce recommender application models, describe several open research problems in the field of recommender systems, and examine privacy implications of recommender systems technology.  相似文献   

13.
用于推荐系统聚类分析的用户兴趣度研究   总被引:3,自引:0,他引:3  
根据推荐系统对用户(商品)聚类的要求,探讨采用用户(网页)兴趣度进行聚类分析的合理思想。通过用户浏览时间、浏览行为以及网页信息量差异等因素的对比,得出用户对某类商品的兴趣度计算方法。借助阈值的设定,定义了用户感兴趣的商品集、商品的感兴趣用户集和兴趣相似的用户集,得到了基于用户兴趣度的用户聚类的一般过程,具有一定的推广价值和借鉴意义。  相似文献   

14.
哈希技术能有效地解决推荐系统面临的存储和检索效率的问题.然而,现存的哈希推荐方法存在一个问题,推荐关注于建模用户对项目的偏好,而哈希学习关心的是相似性.为此,提出了一种改进的哈希推荐方法.计算每个用户、项目相对评分系统的均值作为偏置.对用户评分矩阵进行去偏置处理,将评分映射到相似性区间.以保持相似性为目标,提出了两种方...  相似文献   

15.
    
Recommender systems are used to suggest items to users based on their interests. They have been used widely in various domains, including online stores, web advertisements, and social networks. As part of their process, recommender systems use a set of similarity measurements that would assist in finding interesting items. Although many similarity measurements have been proposed in the literature, they have not concentrated on actual user interests. This paper proposes a new efficient hybrid similarity measure for recommender systems based on user interests. This similarity measure is a combination of two novel base similarity measurements: the user interest–user interest similarity measure and the user interest–item similarity measure. This hybrid similarity measure improves the existing work in three aspects. First, it improves the current recommender systems by using actual user interests. Second, it provides a comprehensive evaluation of an efficient solution to the cold start problem. Third, this similarity measure works well even when no corated items exist between two users. Our experiments show that our proposed similarity measure is efficient in terms of accuracy, execution time, and applicability. Specifically, our proposed similarity measure achieves a mean absolute error (MAE) as low as 0.42, with 64% applicability and an execution time as low as 0.03 s, whereas the existing similarity measures from the literature achieve an MAE of 0.88 at their best; these results demonstrate the superiority of our proposed similarity measure in terms of accuracy, as well as having a high applicability percentage and a very short execution time.  相似文献   

16.
    
A recommender system is an information filtering technology that can be used to recommend items that may be of interest to users. Additionally, there are the context-aware recommender systems that consider contextual information to generate the recommendations. Reviews can provide relevant information that can be used by recommender systems, including contextual and opinion information. In a previous work, we proposed a context-aware recommendation method based on text mining (CARM-TM). The method includes two techniques to extract context from reviews: CIET.5embed, a technique based on word embeddings; and RulesContext, a technique based on association rules. In this work, we have extended our previous method by including CEOM, a new technique which extracts context by using aspect-based opinions. We call our extension of CARM-TOM (context-aware recommendation method based on text and opinion mining). To generate recommendations, our method makes use of the CAMF algorithm, a context-aware recommender based on matrix factorization. To evaluate CARM-TOM, we ran an extensive set of experiments in a dataset about restaurants, comparing CARM-TOM against the MF algorithm, an uncontextual recommender system based on matrix factorization; and against a context extraction method proposed in literature. The empirical results strongly indicate that our method is able to improve a context-aware recommender system.  相似文献   

17.
    
Repositories with educational resources can support the formation of online learning communities by providing a platform for collaboration. Users (e.g. teachers, tutors and learners) access repositories, search for interesting resources to access and use, and in many cases, also exchange experiences and opinions. A particular class of online services that take advantage of the collected knowledge and experience of users are collaborative filtering ones. The successful operation of such services in the context of real‐life applications requires careful testing and parameterization before their actual deployment. In this paper, the case of developing a learning resources' collaborative filtering service for an online community of teachers in Europe was examined. More specifically, a data set of evaluations of learning resources was collected from the teachers that use the European Schoolnet's learning resource portal. These evaluations were then used to support the experimental investigation of design choices for an online collaborative filtering service for the portal's learning resources. A candidate multi‐attribute utility collaborative filtering algorithm was appropriately parameterized and tested for this purpose. Results indicated that the development of such systems should be taking place considering the particularities of the actual communities that are to be served.  相似文献   

18.
用户访问兴趣路径挖掘方法   总被引:2,自引:1,他引:1  
针对当前挖掘用户访问模式算法仅将频繁访问路径作为用户浏览兴趣路径的问题,依据使用Web日志挖掘用户兴趣页面时,通过引入页面信息量参数,综合考虑页面访问次数、浏览时间和页面信息量大小来定义用户兴趣度,提出了基于兴趣度的用户访问模式挖掘算法。实验证明该算法是有效的,在用户浏览兴趣度量方面比当前的频繁访问路径挖掘算法更准确。  相似文献   

19.
User Modeling for Adaptive News Access   总被引:16,自引:0,他引:16  
We present a framework for adaptive news access, based on machine learning techniques specifically designed for this task. First, we focus on the system's general functionality and system architecture. We then describe the interface and design of two deployed news agents that are part of the described architecture. While the first agent provides personalized news through a web-based interface, the second system is geared towards wireless information devices such as PDAs (personal digital assistants) and cell phones. Based on implicit and explicit user feedback, our agents use a machine learning algorithm to induce individual user models. Motivated by general shortcomings of other user modeling systems for Information Retrieval applications, as well as the specific requirements of news classification, we propose the induction of hybrid user models that consist of separate models for short-term and long-term interests. Furthermore, we illustrate how the described algorithm can be used to address an important issue that has thus far received little attention in the Information Retrieval community: a user's information need changes as a direct result of interaction with information. We empirically evaluate the system's performance based on data collected from regular system users. The goal of the evaluation is not only to understand the performance contributions of the algorithm's individual components, but also to assess the overall utility of the proposed user modeling techniques from a user perspective. Our results provide empirical evidence for the utility of the hybrid user model, and suggest that effective personalization can be achieved without requiring any extra effort from the user.  相似文献   

20.
    
In the past decade,recommender systems have been widely used to provide users with personalized products and services.However,most traditional recommender systems are still facing a challenge in dealing with the huge volume,complexity,and dynamics of information.To tackle this challenge,many studies have been conducted to improve recommender system by integrating deep learning techniques.As an unsupervised deep learning method,autoencoder has been widely used for its excellent performance in data dimensionality reduction,feature extraction,and data reconstruction.Meanwhile,recent researches have shown the high efficiency of autoencoder in information retrieval and recommendation tasks.Applying autoencoder on recommender systems would improve the quality of recommendations due to its better understanding of users,demands and characteristics of items.This paper reviews the recent researches on autoencoder-based recommender systems.The differences between autoencoder-based recommender systems and traditional recommender systems are presented in this paper.At last,some potential research directions of autoencoder-based recommender systems are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号