共查询到20条相似文献,搜索用时 31 毫秒
1.
X.‐D. Liu D.‐G. Shang Li.‐H. Zhang Y.‐J. Sun T. Chen 《Fatigue & Fracture of Engineering Materials & Structures》2014,37(4):427-435
A healing method for fatigue damage was studied by laser shock peening (LSP) with excimer laser for polycrystalline copper film. It is found that work hardening due to LSP could be responsible for the improvement of residual fatigue lives for the damaged and undamaged specimens by LSP, and the hardening degree for the damaged specimen by LSP is obviously higher than that for the undamaged specimen by LSP. In this paper, two basic mechanisms were identified. One is the dissipated energy enhancement mechanism, which improves the fatigue life caused by laser shock stress, and the other is the healing mechanism, which leads to a further improvement. Based on the two mechanisms, a residual fatigue life prediction method is proposed by the view of energy consumption before and after LSP. The predicted lives by the proposed method agree well with the experimental results. 相似文献
2.
L‐H. Zhang D‐G. Shang X‐D. Liu Y‐J. Sun Y‐B. Guo F‐Z. Liu T. Chen 《Fatigue & Fracture of Engineering Materials & Structures》2014,37(11):1232-1241
The healing variable and enhancement variable were first defined by the fatigue ductility, and then based on the relationship of the damage variable, the healing variable and the enhancement variable, a nonlinear fatigue damage‐healing model was proposed for predicting the fatigue life of the healed copper film by laser shock peening (LSP). The nonlinear fatigue damage cumulative process was considered in the model for the original specimen without LSP under constant and variable amplitude loadings. The results showed that the proposed nonlinear fatigue damage‐healing model can predict the residual fatigue life for the damaged copper film specimen well. 相似文献
3.
4.
Fatigue life prediction based on equivalent stresses for laser beam welded 6156 Al‐alloy joints under variable amplitude loading 下载免费PDF全文
H. Liu D.‐G. Shang J.‐Z. Liu Z.‐K. Guo 《Fatigue & Fracture of Engineering Materials & Structures》2015,38(8):997-1005
In the present work, a simple fatigue life prediction approach is proposed using fracture mechanics for laser beam welded Al‐alloy joints under variable amplitude loading. In the proposed approach, variable amplitude loading sequence is transformed into an equivalent constant amplitude loading using the root mean square model. The crack growth driving force K* is chosen to describe the fatigue crack growth rate. The influences of residual stress and its relaxation on fatigue life are taken into account in the proposed approach. The fatigue lives are also predicted using the traditional approach based on the S‐N curves and the rainflow counting method. The predicted results show that the proposed approach is better than the traditional approach. 相似文献
5.
Fatigue life prediction of vulcanized natural rubber under proportional and non-proportional loading
Y. WANG W. YU X. CHEN L. YAN 《Fatigue & Fracture of Engineering Materials & Structures》2008,31(1):38-48
To investigate the multiaxial fatigue properties of vulcanized natural rubber (NR), a series of tests including both proportional and non-proportional loading paths on small specimens were performed. The existing fatigue life prediction approaches are evaluated with life data obtained in the tests. It is shown that the equivalent strain approach presents a good prediction of the fatigue life although it has a certain shortcoming. Compared with the strain energy density (SED) model, the cracking energy density (CED) model represents the portion of SED that is available to be released by virtue of crack growth on a given material plane, so it gives better results in the life prediction. Some of the approaches based on critical plane which are widely used for metal fatigue are also tested in this paper, and the results show that the Chen-Xu-Huang (CXH) model gives a better prediction, compared with the Smith-Watson-Topper (SWT) and Wang–Brown (WB) model. A modified Fatemi–Socie's model has also been introduced, and the results show that the modified model can be used to predict the fatigue life of rubber material well. 相似文献
6.
Fatigue life prediction techniques for variable amplitude load histories are reviewed. The fatigue crack growth rate and crack closure responses of BS4360 50B steel are determined for a service load history experienced by a gas storage vessel. Crack propagation rates are found to be independent of specimen thickness. Crack growth is successfully predicted by linear summation using the Paris law; no significant improvement is achieved by incorporating crack closure into the analysis. The particular choice of cycle counting technique is also found to have an insignificant effect on the predicted fatigue life. The load-interaction model proposed by Willenborg et al correctly indicates the absence of retarded growth, whilst the Wheeler and Führing models erroneously predict retarded crack growth. 相似文献
7.
V. Kliman 《International Journal of Fatigue》1985,7(1):39-44
A procedure for estimating the useful life of a component for a given (admissable) probability of fatigue fracture origination under random loading is presented. The method uses material constants obtained from the S/N and cyclic stress/strain curves, standard deviation and probability density distribution of the loading process and a macroblock of harmonic cycles obtained by applying the rainflow cycle counting method to the random loading process. Theoretical and experimental lives are found to exhibit good agreement. 相似文献
8.
Aoshuang Wan Junjiang Xiong Yigeng Xu 《Fatigue & Fracture of Engineering Materials & Structures》2020,43(9):2130-2146
An engineering approach for fatigue life prediction of fibre‐reinforced polymer composite materials is highly desirable for industries due to the complexity in damage mechanisms and their interactions. This paper presents a fatigue‐driven residual strength model considering the effect of initial delamination size and stress ratio. Static and constant amplitude fatigue tests of woven composite specimens with delamination diameters of 0, 4 and 6 mm were carried out to determine the model parameters. Good agreement with experimental results has been achieved when the modified residual strength model has been applied for fatigue life prediction of the woven composite laminate with an initial delamination diameter of 8 mm under constant amplitude load and block fatigue load. It has been demonstrated that the residual strength degradation‐based model can effectively reflect the load sequence effect on fatigue damage and hence provide more accurate fatigue life prediction than the traditional linear damage accumulation models. 相似文献
9.
T. N. CHAKHERLOU M. MIRZAJANZADEH K. H. SAEEDI 《Fatigue & Fracture of Engineering Materials & Structures》2010,33(10):633-644
To understand the different aspects of fatigue behaviour of complex structural joints it will be much helpful if the effects of different parameters are studied separately. In this article, to study the isolated effect of interference fit on fatigue life a pined hole specimen is investigated. This specimen is a single‐holed plate with an oversized pin which force fitted to the hole. The investigation was carried out both experimentally and numerically. In the experimental part, interference fitted specimens along with open hole specimens were fatigue tested to study the experimental effect of the interference fit. In the numerical part, three‐dimensional finite element (FE) simulations have been performed in order to obtain the created stresses due to interference fit and subsequent applied longitudinal load at the holed plate. The stress distribution obtained from FE simulation around the hole was used to predict crack initiation life using Smith–Watson–Topper method and fatigue crack growth life using the NASGRO equation with applying the AFGROW computer code. The predicted fatigue life obtained from the numerical methods show a good agreement with the experimental fatigue life. 相似文献
10.
由于层间应力的存在,受面内载荷作用的复合材料层压板实际处于多轴应力状态。构建了由刚性元、弹簧元和二维板元构成的准三维有限元模型,结合单向板在典型应力状态下的疲劳试验结果和疲劳损伤模型,发展了一种考虑三维应力的、预测任意铺层多向层压板疲劳寿命的分析方法,包括应力分析、静力和疲劳累积损伤失效分析及材料性能退化3个主要部分,能够模拟面内和层间损伤产生、发展直至层压板整体破坏的完整过程,并得到疲劳寿命。对2种T300/QY8911多向铺层板进行了实际计算,寿命预测结果与试验结果吻合较好。 相似文献
11.
12.
Niall A. Smyth M. Burak Toparli Michael E. Fitzpatrick Phil E. Irving 《Fatigue & Fracture of Engineering Materials & Structures》2019,42(5):1161-1174
The aim of the current work was to study the effect of laser shock peening (LSP) when applied to 2‐mm thick 2024‐T351 aluminium samples containing scratch‐like defects in the form of V‐shaped scribes 50 to 150 μm deep. The scribes decreased fatigue life to 5% of that of the pristine material. The effect of laser peening on fatigue life was dependent on the specifics of the peen treatment, ranging from further reductions in life to restoration of the fatigue life to 61% of pristine material. Fatigue life was markedly sensitive to near‐surface tensile residual stress, even if a compressive residual stress field was present at greater depth. Fatigue life after peening was also dependent on sample distortion generated during the peening process. Sample distortion modified local stresses generated by externally applied loads, producing additional life changes. Models based on residual stress intensity and crack closure concepts were successfully applied to predict fatigue life recovery. 相似文献
13.
We demonstrate the generation of mode-locked Thulium-Doped Fibre Laser by employing a newly developed saturable absorber (SA) based on copper (Cu) thin film. The SA was prepared by depositing nano-sized particles of Cu onto the surface of polyvinyl alcohol (PVA) film through the E-Beam evaporation process. A stable mode-locking pulse train operating at 1951?nm was successfully generated by introducing the Cu PVA SA into a laser cavity. The laser generated a pulse train at the fundamental frequency of 8.5?MHz with a calculated minimum pulse width of 14.8?ps. This demonstration proves that the Cu PVA based SA is suitable for generating mode-locked fibre laser at 2?µm region. 相似文献
14.
Based on the characteristics of the sliding surface, sliding direction, and fatigue damage mechanism of metal materials, the mechanical model of a body–bar–plate structure is proposed with consideration to the plastic damage mechanism. The elastoplastic constitutive equations and damage constitutive equations of the face-centered cubic (FCC) structure subjected to multiaxial cyclic loading were derived, and the damage evolution law of the body–bar–plate mechanical model was investigated. Then, the meso-damage evolution equation was established under multiaxial nonproportional loading. Subsequently, the relationship between the fatigue performance and microstructure under multiaxial nonproportional loading was investigated, and a damage mechanics–finite element method (FEM) with consideration to the damage evolution is proposed. The proposed model and method provide a new approach for predicting the fatigue life of metal materials. 相似文献
15.
Fatigue life prediction of additively manufactured material: Effects of surface roughness,defect size,and shape 下载免费PDF全文
A. Yadollahi M.J. Mahtabi A. Khalili H.R. Doude J.C. Newman Jr 《Fatigue & Fracture of Engineering Materials & Structures》2018,41(7):1602-1614
In this paper, the effects of process‐induced voids and surface roughness on the fatigue life of an additively manufactured material are investigated using a crack closure‐based fatigue crack growth model. Among different sources of damage under cyclic loadings, fatigue because of cracks originated from voids and surface discontinuities is the most life‐limiting failure mechanism in the parts fabricated via powder‐based metal additive manufacturing (AM). Hence, having the ability to predict the fatigue behaviour of AM materials based on the void features and surface texture would be the first step towards improving the reliability of AM parts. Test results from the literature on Inconel 718 fabricated via a laser powder bed fusion (L‐PBF) method are analysed herein to model the fatigue behaviour based on the crack growth from semicircular/elliptical surface flaws. The fatigue life variations in the specimens with machined and as‐built surface finishes are captured using the characteristics of voids and surface profile, respectively. The results indicate that knowing the statistical range of defect size and shape along with a proper fatigue analysis approach provides the opportunity of predicting the scatter in the fatigue life of AM materials. In addition, maximum valley depth of the surface profile can be used as an appropriate parameter for the fatigue life prediction of AM materials in their as‐built surface condition. 相似文献
16.
M. M. K. LEE D. BOWNESS 《Fatigue & Fracture of Engineering Materials & Structures》2002,25(11):1025-1032
ABSTRACT Fatigue crack growth calculations were performed on offshore tubular joints using the Paris crack growth law. The stress intensity factors required for such calculations were obtained from T‐butt solutions previously proposed by the authors. The applicability of the solutions to tubular joints was first demonstrated by comparing the fatigue life of a base case with that obtained from a mean S–N curve, and the influence on fatigue life of various factors including load shedding, the size of initial defects, weld geometry, etc. was investigated. The solutions were then used to predict the lives of tubular T‐joints from an experimental database. The results show that the solutions underestimate the fatigue life; this underestimation was shown to be primarily due to ignoring the combined effects of load shedding and the intersection stress distribution. In general, however, the trends in the predicted fatigue lives with joint geometry and other details were seen to be superior to predictions from the S–N approach, with the solutions significantly reducing the dependency on loading mode exhibited by the test data. 相似文献
17.
K. GUO R. BELL X. WANG 《Fatigue & Fracture of Engineering Materials & Structures》2008,31(3-4):234-241
The fatigue crack propagation analyses of padded plates are conducted to predict the crack growth behaviour under various loading conditions. The fatigue life of a padded plate with a single edge crack originating from the weld toe is calculated using the weight function approach. The fatigue strength of padded plates with different pad thickness under remote loading conditions was investigated and compared to the T-plate joint. The improvement of the fatigue strength of the pad design is verified.
The thickness effect of the padded plate was investigated using the fracture mechanics approach. The geometrically similar model pairs with different initial crack sizes were investigated under remote loading conditions. It was shown that the thickness effect depends on both stress concentration and initial crack size. 相似文献
The thickness effect of the padded plate was investigated using the fracture mechanics approach. The geometrically similar model pairs with different initial crack sizes were investigated under remote loading conditions. It was shown that the thickness effect depends on both stress concentration and initial crack size. 相似文献
18.
In hot forging operations, the die surfaces and the nearest surface layers of the die undergo mechanical and thermal cycles which significantly influence their service life. The real thermal and mechanical cycles have been previously investigated in forging plants by measurements and numerical simulation, and a reasonable variation window of process parameters has been determined. A new simulative test applied to AISI H11 hot working die steel has been used to generate failure data in conditions similar to those of the forging dies, but under a more controlled and economical method. Fracture surfaces of specimens for different tests observed by scanning electron microscopy (SEM) indicate that both thermo-mechanical fatigue (TMF) and creep phenomena can be considered to be main damage mechanisms and their contribution to the failure differs as testing conditions vary. As a result of the experiments, the failure is affected by both thermo-mechanical cycle and resting time at high temperature. Therefore, the authors developed a new lifetime prediction model obtained by combining the damage evolution laws, at each cycle, for pure creep and pure TMF. This combination was based on the linear accumulation rule. The damage evolution law for pure creep is obtained by modifying Rabotnov's law in order to suit the case of actual hot forging cycles, where temperature and stress vary widely. The damage evolution law for pure TMF is based on a generalization of the Wöhler–Miner law. This law is modified in order to take into account the presence of thermal cycle and thermal gradient. Comparison between the experimental cycles to failure and the predicted ones was performed using tests excluded in the determination of the coefficients. The conclusion was that the accuracy of prediction appears to be quite good and that the linear accumulation and interaction of TMF and creep is confirmed. 相似文献
19.
H. CHEN D.‐G. SHANG E.‐T. LIU 《Fatigue & Fracture of Engineering Materials & Structures》2011,34(10):782-791
A path‐dependent cycle counting method is proposed by applying the distance formula between two points on the tension‐shear equivalent strain plane for the identified half‐cycles first. The Shang–Wang multiaxial fatigue damage model for an identified half‐cycle and Miner's linear accumulation damage rule are used to calculate cumulative fatigue damage. Therefore, a multiaxial fatigue life prediction procedure is presented to predict conveniently fatigue life under a given tension and torsion random loading time history. The proposed method is evaluated by experimental data from tests on cylindrical thin‐walled tubes specimens of En15R steel subjected to combined tension/torsion random loading, and the prediction results of the proposed method are compared with those of the Wang–Brown method. The results showed that both methods provided satisfactory prediction. 相似文献
20.
Alexander Victorovich Gonchar Konstantin Vladimirovich Kurashkin Olga Vyacheslavovna Andreeva Maxim Sergeevich Anosov Vyacheslav Alexandrovich Klyushnikov 《Fatigue & Fracture of Engineering Materials & Structures》2022,45(1):101-112
Nondestructive evaluation methods provide additional information about the material fatigue behavior and enhance the comprehension of damage evolution thanks to relationship between microstructure and physical properties. This paper deals with optical and ultrasonic investigations of structural steel specimens tested for low-cycle fatigue. The development of persistent slip bands observed on the surface with an optical microscope was quantified using a previously trained neural network and fractal analysis. A surface damage parameter was defined as the ratio of total area of detected slip bands to the area of observed surface. Relationships between the rate of change and critical value of the damage parameter, the strain range, and the fatigue life were established. A single square relationship between relative number of cycles and ratio of the surface damage parameter to its critical value was obtained. Acoustic birefringence was measured by the echo method. The effect of the strain range on the rate of change in acoustic birefringence was investigated. A single linear relationship between relative number of cycles and change in acoustic birefringence was established. An algorithm for predicting the material remaining life, combining optical and ultrasonic data, was proposed. 相似文献