首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In the present work, evolution of damage under high‐temperature (823 K) low cycle fatigue loading condition in near α IMI‐834 titanium alloy has been studied. The in situ damage has been experimentally measured during cyclic deformation using the alternating current potential drop (ACPD) technique. The measured damage curve has been compared with the damage curves calculated through mechanical variables such as cyclic modulus and stress amplitude. The ACPD damage curve has been found most sensitive towards high‐temperature low cycle fatigue damage evolution.  相似文献   

2.
In the present study, the results of the monotonic tension tests and low cycle fatigue tests performed on aluminium alloy EN AW‐2024‐T3 under various operating temperatures are presented in order to assess the fatigue behaviour of the aluminium alloy under evaluated temperatures. Monotonic tests were performed to determine the influence of temperature on mechanical properties of the material. The aim of cyclic tests was to acquire the parameters required for Manson–Coffin equation in order to plot strain–fatigue life curves. Moreover, stress–strain behaviour of the alloy and the cyclic hardening behaviour were evaluated using Ramberg–Osgood equation. Finally, PSWT‐damage parameters for each temperature have been calculated for further investigation of the effects of the temperature on fatigue life using acquired data while taking the account of mean stress effect into calculations. Variations in the experimental data due to various test temperatures are presented for both monotonic and cyclic tests.  相似文献   

3.
The numerical analysis of low cycle fatigue of HTS‐A steel welded joints under combined bending and local compressive loads are implemented using the damage mechanics approach. First, a finite element numerical simulation of the welding process is employed to extract the welding residual stresses, which are then imported as initial stresses in the subsequent fatigue analysis. Second, a multiaxial fatigue damage model including damage coupled elasto‐plastic constitutive equations and plastic damage evolution formulation is applied to evaluate the mechanical degradation of the material under biaxial fatigue loads. Further, the fatigue lives of the HTS‐A steel welded joints are computed and compared with the experimental results from literature. A series of predicted load‐life curves clearly illustrates the variation of fatigue lives along with the combined loadings. Finally, the effects of local compression on accumulated plastic strain and fatigue damage are studied in detail. It is revealed that the local compression induces a damage competition between two critical zones.  相似文献   

4.
The experimental identification of fatigue damage mechanisms and evaluation of their development rate, based on changes in material respond on cycle loading, has been presented in the work. The research has been conducted on hyper-eutectic cast alloy AlSi8Cu3. The microstructure and fracture analyses were performed. The high cycle fatigue tests were conducted with frequency of 20 Hz under constant nominal stress amplitude with monitoring the strain response of material during the test. The ratcheting was found as the main mechanism of the fatigue damage. It was established that the linear fatigue accumulation law should not be used for fatigue life prediction in case of the tested cast aluminum alloy.  相似文献   

5.
The paper presents a fatigue damage accumulation model, which allows us to predict fatigue life under low cycle uniaxial loadings at elevated temperatures. The structure of the model has been based on the stress–strain curves obtained during the experimental study. The model has been verified experimentally by applying experimental studies carried out on ENAW-2024T3 aluminum alloy and 2Cr–2WVTa steel. Moreover, a comparison between the results of fatigue life prediction using the proposed damage accumulation model was done with the results obtained on the basis of various generally applied models, based on the Manson–Coffin dependency. Furthermore this paper presents the results of experimental studies carried out on the aluminum alloy ENAW 2024 T3 under uniaxial low cycle fatigue loadings in the conditions of elevated temperatures. In the course of the study, material constants and the parameters of the stress–strain curve in the range of low cycle fatigue for four levels of temperatures (20, 100, 200 and 300 °C) were set.  相似文献   

6.
A cohesive zone model has been developed for the simulation of both high and low cycle fatigue crack growth. The developed model provides an alternative approach that reflects the computational efficiency of the well‐established envelop‐load damage model yet can deliver the accuracy of the equally well‐established loading‐unloading hysteresis damage model. A feature included in the new cohesive zone model is a damage mechanism that accumulates as a result of cyclic plastic separation and material deterioration to capture a finite fatigue life. The accumulation of damage is reflected in the loading‐unloading hysteresis curve, but additionally, the model incorporates a fast‐track feature. This is achieved by “freezing in” a particular damage state for one loading cycle over a predefined number of cycles. The new model is used to simulate mode I fatigue crack growth in austenitic stainless steel 304 at significant reduction in the computational cost.  相似文献   

7.
This paper discusses low‐cycle fatigue characteristics of 316L stainless steel under proportional and nonproportional loadings. Tension–torsion multiaxial low‐cycle fatigue tests were performed using five strain paths. Additional hardening was observed under nonproportional loadings and was more significant in tests with larger nonproportionality. Mises equivalent strain, Smith–Watson–Topper, Fatemi–Socie, Kandil–Brown–Miller and nonproportional strain parameters were applied to the experimental data to evaluate the multiaxial low‐cycle fatigue damage. The applicability of the damage laws to practical design was discussed.  相似文献   

8.
Fatigue life assessment for two‐phase steel SAE 1045 has been carried out by experimental and simulation techniques. Analytical approach, termed as fatigue lifetime calculation, was employed making use of a load increase testing procedure and constant amplitude tests equipped with measurement techniques – plastic strain amplitude, change in temperature and change in electrical potential difference. The predicted fatigue life has been validated by constant amplitude tests and compared with fatigue life estimation by microstructure‐based simulation. Simulation has been carried out over the complete cross section of the specimen. The simulation uses damage accumulation in the gage section of the specimen culminating in the macro‐crack propagation, taking into account the inhomogeneous fatigue resistance of the material element. The results show that at the initial intervals of high cycle fatigue range at relatively higher stress amplitudes, the experimental and simulation results are in agreement; whereas in the (high cycle fatigue) region at relatively low stress amplitudes, the simulation results were found more optimistic and the corresponding fatigue scatter is also increased. Each scatter is attributed to the relatively small number of analysed models of the material structure. Scanning electron microscope was used to determine volume fraction of the microstructure for simulation. Fatigue fracture surface analysis shows that crack initiated from internal defect of material and crack propagation is driven by silicon oxide inclusion.  相似文献   

9.
Abstract— Thermal fatigue is a well recognised source of damage in headers and steam piping of thermoelectric power plant. This topic has been extensively examined in the past for low alloy ferritic steels typically used in such applications. Experimental evidence obtained in low cycle fatigue testing with tensile hold times on Modified 9Cr1Mo and E911 steels suggests that the Linear Damage Summation rule conventionally used in engineering codes for high temperature damage analysis may not be particulary appropriate for the advanced 9Cr steel family. For this reason two alternatives have been examined: (a) a strain based creep damage evaluation using the R5 ductility exhaustion approach and (b) a creep-fatigue continuum damage mechanics method. The potential advantages and disadvantages of both are discussed. In addition, results from low cycle fatigue and thermomechanical fatigue tests on crossweld specimens machined from welded joints in the Mod.9Cr1Mo alloy are evaluated. Even if the usual cyclic life reduction factor of 2 with respect to base material behaviour appears adequate to account for the mean trend of cross-weld results, the large variability observed risks making the use of such a factor non-conservative for accurate life prediction.  相似文献   

10.
The influence of prior low‐cycle fatigue (LCF) on the residual fatigue life was investigated experimentally. A Ni‐based alloy was cyclically loaded under stress‐controlled low‐high (LH) block loading. In the first loading step, low‐amplitude loading was performed with the stress amplitude of 283.5MPa at 710°C. Different cycles of preloading were performed, varying from 100 to 10 000. Subsequently, high‐amplitude fatigue loading was carried out with the stress amplitude of 315MPa at 800°C. Experimental results show that the previous loading was beneficial to the residual fatigue life when the consumed life fraction is below 0.2 and detrimental when the consumed life fraction is larger than 0.2. A novel nonlinear fatigue damage accumulation model was proposed to estimate the residual LCF life under LH loading path considering the effects of load sequence and preloading cycles. The proposed model provided a better life prediction than some existing models, such as Kwofie‐Rahbar model, Miner' rule, Peng model, and Ye‐Wang model. Lastly, this model was further validated using various materials under LH and high‐low block loadings.  相似文献   

11.
To investigate the cumulative fatigue damage below the fatigue limit of multipass weldment martensitic stainless steel, and to clarify the effect of cycle ratios and high‐stress level in the statement, fatigue tests were conducted under constant and combined high‐ and low‐stress amplitude relative to stress above and below the fatigue limit. The outcomes indicate that neither modified Miner's nor Haibach's approach provided accurate evaluation under repeated two‐step amplitude loading. Moreover, effect of cycle ratios has been determined. Additionally, the cumulative fatigue damage saturated model is established and validated. Cumulative fatigue damage contributed by low‐stress below the fatigue limit in high stress of 700 MPa is higher than that with 650 MPa at identical conditions (fatigue limit 575 MPa). Thus, high stress affects fatigue damage behaviour below the fatigue limit. A new predicted approach has been proposed based on Corten‐Dolan law, whose accuracy and applicability have been proven.  相似文献   

12.
Abstract

Creep–fatigue interaction has been studied in single crystal and equiaxed Ni based superalloys, adopted for critical gas turbine component applications. Cyclic hold tests have been performed to understand the influence of creep damage and deformation on fatigue endurance, considering also the effect of the position of the hold time in the low cycle fatigue cycle. Service-like thermomechanical fatigue (TMF) benchmark tests have been carried out, involving TMF cycles based on the loading conditions at component critical locations determined by finite element (FE) simulation. Damage calculations have been performed on all the conducted tests for both materials, comparing results obtained by different methodologies (e.g. time fraction, ductility exhaustion, strain energy density). The results have been compared with actual in-service damage revealed by microstructural examination.  相似文献   

13.
This paper proposes a low‐cost method for predicting probabilistic high‐cycle fatigue life for Al 2024‐T3 based on continuum damage mechanics and non‐intrusive polynomial chaos (NIPC). To randomize Lemaitre's two scale fatigue damage model, parameters S and s are regarded as random variables. Based on small sample of test life, inverse analysis is performed to obtain samples of the two parameters. Statistic characteristics of the two parameters are calculated analytically through coefficients of NIPC. Fatigue test of aluminum alloy 2024‐T3 standard coupon and plate with hole under different spectrum loading shows that the proposed method is effective.  相似文献   

14.
结合TA12、TC4钛合金和Cr2Ni2MoV钢的Paris律实验结果,对基于材料的低周疲劳临界损伤获取材料疲劳裂纹扩展Paris律的有限元模拟方法(称为LFF方法)进行了有效性验证,并开展了拓展应用。实验结果与模拟结果比较表明,LFF方法用于模拟材料Paris律有良好准确度。应用LFF方法获得了Cr2Ni2MoV钢、N18合金在多种高温下的Paris模型参数,研究了疲劳裂纹扩展速率的温度效应。  相似文献   

15.
An algorithm is developed for fatigue damage evolution simulation of long‐span steel bridges based on continuum damage mechanics (CDM) in this study. The progressive fatigue damage from local component damage evolution to entire structural failure is simulated with nonstandard varying block cycle length, which is automatically obtained during computation to speed up fatigue evolution simulation without user intervention. In this paper, progressive fatigue damage evolution of the Stonecutters cable‐stayed bridge due to vehicle loading is simulated by using the proposed algorithm and the bridge model. It shows that the algorithm is effective, and it can improve the computational efficiency of fatigue damage simulation of a large‐scale steel bridge.  相似文献   

16.
This paper proposes a temperature modified Dirlik method to estimate the high cycle fatigue damage for uniaxial loadings caused by random vibrations directly from a power spectral analysis. Besides, the methodology for combining the frequency based fatigue analysis with the temperature effect is represented. This approach is based on a new definition of loading as a random Gaussian process. The fatigue damage estimation of the high pressure die-cast aluminium alloy AlSi9Cu3 is investigated at elevated temperatures. Finally, numerical simulations on the known power spectral densities with different shapes at different temperatures are performed in order to establish proper dependence between the temperature modified Dirlik method, the rainflow cycle counting, the linear cumulative fatigue damage and the spectral bandwidth parameters. The proposed method enables computationally fast fatigue damage estimation for the random loadings and the temperature histories.  相似文献   

17.
In this paper, impact damage behaviours of C/SiC rigid‐felt titanium alloy three‐layered plate under normal impact are investigated. First, low velocity impact experiment of the three‐layered plate is performed by means of a drop weight impact apparatus. Second, the finite element model of the three‐layered plate is established using a damage constitutive model; also, the influences of the initial kinetic energy (the initial velocity and the mass of the impactor) on stress distributions and damage patterns of the three‐layered plate are analysed. Finally, the energy dissipation mechanisms and failure characterizations of the three‐layered plate are discussed; also, the agreements of physical variables and damage morphologies between experimental and numerical results validate the reliability of numerical simulation. The results will play an important role in designing and evaluating advanced thermal protection structure.  相似文献   

18.
Application of high‐strength steel on different structural components is becoming more attractive. In spite of their great advantages of high yield strength, the use of these steel grades faces some important challenges as well. There are many formed steel components of different structures that are subjected to fatigue loading conditions. The main objective of the present study is to investigate the effect of pre‐bending process of high‐strength steel subjected to low‐cycle fatigue loading conditions. For this purpose, a new test set‐up has been designed to take into consideration the effect of pre‐bending process when the fatigue load is applied. To detect fatigue crack initiation onset, lock‐in thermography technique is used to monitor the incremental temperature variation during fatigue cycling. Furthermore, to estimate fatigue lifetime of the formed fatigue sample, continuum damage mechanics approach is applied by means of numerical modelling.  相似文献   

19.
沙宇  张嘉振  白士刚  周振功 《工程力学》2012,29(10):327-334
应用弹塑性有限元方法与增量塑性损伤理论指出疲劳裂纹扩展的压载荷效应是裂纹尖端塑性损伤的结果, 建立了在拉-压循环加载下铝合金疲劳裂纹扩展速率的双参数预报模型, 对LY12-M 高强铝合金MT 试件在应力比R=0、-0.5、-1、-2 进行了疲劳裂纹扩展实验。结果表明:当最大应力强度因子Kmax相同时, 恒幅拉压加载(应力比R<0)的疲劳裂纹扩展速率明显高于恒幅拉拉加载(应力比R=0)的情况, 拉-压循环载荷的压载荷部分对疲劳裂纹扩展速率具有促进作用。该文得出的LY12-M 铝合金在拉-压循环加载下的疲劳裂纹扩展速率预报模型与实验结果符合较好。  相似文献   

20.
This paper describes a microstructure‐based uniaxial strain‐controlled fatigue life prediction model applied to A319 aluminum alloy which is widely used in automobile industry. The materials made with different casting conditions are characterized and quantified in terms of secondary dendrite arm spacing (SDAS), size, and aspect ratio of eutectic Si particles. Uniaxial low cycle fatigue tests have been performed on four groups of A319 alloy under different casting conditions in which cooling rate and Sr addition are variables. It is shown that the effect of various degrees of microstructure on the fatigue life and fatigue behavior is obvious. The first part of the paper is quantitatively characterizing the microstructure of samples to identify the influence of different casting conditions. With regard to mechanic properties, the tensile properties and fatigue behavior of samples are analyzed combining with microstructure. Finally, a microstructure‐based Manson‐Coffin‐Basquin model is proposed to predict fatigue life of Al‐Si alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号