首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用高温熔融法制备了Bi、Tm、Bi/Tm掺杂TiO2-BaO-SiO2-Ga2O3玻璃系统。在808 nm激光激发下, 与Tm单掺杂玻璃相比, Bi/Tm共掺玻璃中Tm3+3H43F4跃迁荧光(~1485 nm)得到了显著的增强, 而Tm3+3F43H6跃迁荧光(~1810 nm)减弱。在980 nm激光激发下, Tm单掺玻璃中没有观察到Tm离子的特征发光, 而在Bi/Tm共掺玻璃中观察到Tm3+3F43H6跃迁荧光(~1810 nm)。这是由于在808和980 nm激光二极管(LD)各自激发下, Bi/Tm共掺玻璃中活性Bi离子的近红外发光能量传递给Tm3+, 分别产生3F43H43H63H5跃迁所致。采用Inokuti-Hirayama模型, 分析了该玻璃体系中Bi→Tm的能量传递机理。结果表明, Bi→Tm的能量传递属于电偶极–偶极相互作用。  相似文献   

2.
Optically active Er3+:Yb3+ codoped Y2O3 films have been produced on c-cut sapphire substrates by pulsed laser deposition from ceramic Er:Yb:Y2O3 targets having different rare-earth concentrations. Stoichiometic films with very high rare-earth concentrations (up to 5.5 × 1021 at cm− 3) have been achieved by using a low oxygen pressure (1 Pa) during deposition whereas higher pressures lead to films having excess of oxygen. The crystalline structure of such stoichiometric films was found to worsen the thicker the films are. Their luminescence at 1.53 μm and up-conversion effects have been studied by pumping the Yb3+ at 0.974 μm. The highest lifetime value (up to 4.6 ms) is achieved in films having Er concentrations of ≈ 3.5 × 1020 at cm− 3 and total rare-earth concentration ≈ 1.8 × 1021 at cm− 3. All the stoichiometric films irrespective of their rare-earth concentration or crystalline quality have shown no significant up-conversion.  相似文献   

3.
Lead barium niobate is a new photorefractive material of high interest for a variety of applications including holographic storage. Pb0.5Ba0.5Nb2O6 crystals have been grown by the Bridgman method, and the effects of heat treatments on their photorefractive properties were investigated using Ar ion laser at λ=514.5 nm. The color and absorption spectrum of the crystals varied depending on the oxygen partial pressure during heat treatment. The oxygen diffusivity was estimated to be in the order of 10−6 and 10−5 cm2/h at 425 and 550 °C, respectively. Reduction treatment at an oxygen pressure of 215 mTorr increased the effective density of photorefractive charges about three times from 8.0×1015 to 2.2×1016 cm−3 and made the charge transport more electron-dominant. As a result, the maximum gain coefficient improved from 5.5 to 13.8 cm−1. A diffraction efficiency as high as 70% was achieved in a reduced crystal.  相似文献   

4.
Catalytic chemical vapor deposition (Cat-CVD) has been developed to deposit alumina (Al2O3) thin films on silicon (Si) crystals using N2 bubbled tri-methyl aluminum [Al(CH3)3, TMA] and molecular oxygen (O2) as source species and tungsten wires as a catalyzer. The catalyzer dissociated TMA at approximately 600 °C. The maximum deposition rate was 18 nm min−1 at a catalyzer temperature of 1000 °C and substrate temperature of 800 °C. Metal oxide semiconductor (MOS) diodes were fabricated using gates composed of 32.5-nm-thick alumina film deposited at a substrate temperature of 400 °C. The capacitance measurements resulted in a relative dielectric constant of 7.4, fixed charge density of 1.74×1012 cm−2, small hysteresis voltage of 0.12 V, and very few interface trapping charges. The leakage current was 5.01×10−7 A cm−2 at a gate bias of 1 V.  相似文献   

5.
We report measurements of the energy transfer between Er3+ and Ce3+ in Y2O3. The transition between the Er3+ 4I11/2 and 4I13/2 excited states can be stimulated by energy transfer to Ce3+, augmenting the population in the 4I13/2 state at the expense of that in the 4I11/2 state. Experiments were performed on Y2O3 planar waveguides doped with 0.2 at.% erbium and 0–0.42 at.% cerium by ion implantation. From measurements of Er3+ decay rates as a function of cerium concentration we derive an energy transfer rate constant of 1.3×10−18 cm3/s. The efficiency of the energy transfer amounts to 0.47 at 0.42 at.% cerium. The energy transfer rate constant measured in Y2O3 is two times smaller for Er3+→Ce3+ than that for Er3+→Eu3+ in the same material.  相似文献   

6.
Diamond-like carbon films, grown on microscope slides by a dual-ion beam sputtering system, were implanted by 110 keV N+ under the doses of 1 × 1015, 1 × 1016 and 1 × 1017ions cm−2 respectively. The implantation induced changes in electrical resistivity of the films and in infrared (IR) transmittance of the specimens were investigated as a function of implantation dose. The structural changes of the films were also studied using IR spectroscopy and Raman spectroscopy. It was observed that, with the increase of implantation dose, the diamond-like carbon films display two different stages in electrical and optical behaviours. The first is the increase of both the film resistivity and the IR transmittance of specimen at the dose of 1 × 1015 ions cm−2 which, we consider, is attributed to the implantation-induced increase sp3 C---H bonds. However, when the doses are higher than 1 × 1015 ions cm−2, the film resistivity and the IR transmittance of specimen decrea significantly and the decrease rates at dose range of 1×1016 to 1×1017 ions cm−2 are smaller than those between 1×1015 and 1 × 1016 ions cm−2. We conclude that the significant reductions of the two parameters at high doses are caused by the decreases of bond-angle disorder and of sp3 C---H bonds, the increases of sp2 C---C bonds dominated the crystallite size and/or number and also the sp2 C---H bonds. The smaller decrease rates at a dose range of 1 × 1016 to 1 × 1017 ions cm−2 may be caused by further recombination of some retained hydrogen atoms to carbon atoms.  相似文献   

7.
The lattice matched Ga0.94In0.06As0.13Sb0.87 quaternary solid solutions were grown by liquid phase epitaxy on (1 0 0) oriented InAs substrates from In rich melt. The p-type GaIn0.06As0.13Sb layers were intentionally undoped and their hole concentration was about p5×1016 cm−3, while n-type GaIn0.06As0.13Sb layers were slightly doped with Te and their electron concentration was about n1017 cm−3. Photoluminescence spectra exhibit single unresolved emission band in the spectral region from 0.65 to 0.8 eV for both types. Spectra were decomposed to elementary Gaussian components. The main mechanisms of radiative recombination were determined for both types of material.  相似文献   

8.
Novel pure and cobalt-doped magnesium borate crystals (Mg3B2O6) have been grown successfully by the Czochralski technique for the first time. Crystal growth, X-ray powder diffraction (XRD) analysis, absorption spectrum, fluorescence spectrum as well as fluorescence decay curve of Co2+:Mg3B2O6 (MBO) were described. From the absorption peaks for the octahedral Co2+ ions, the crystal-field parameter Dq and the Racah parameter B were estimated to be 943.3 cm−1 and 821.6 cm−1, respectively. The fluorescence lifetime of the transition 4T1(4P) → 4T2 centered at 717 nm was measured to be 9.68 ms.  相似文献   

9.
The temperature dependencies of the nanosecond multiphonon relaxation (MR) rates of the 3F3 state of Tm3+ in the YLF crystal and of the 5F5 state of Ho3+ ion in the YAG and LuAG crystals and of the microsecond MR rates of the 4F9/2 (2H9/2) state of Er3+ ions in YLF were measured in the wide temperature range using direct laser excitation and selective fluorescence kinetics decay registration. For YLF the observed relations are explained by 4-phonon process in the frame of a single-frequency model with hωeff=450±30 cm−1 for the 3F3 state of Tm3+ and by 5-phonon process with hωeff=445 cm−1 for the 4F9/2 (2H9/2) state of Er3+. For YAG and LuAG crystals these dependencies are explained by the 3-phonon process with hωeff=630 cm−1. The decrease of the relaxation rate with the temperature in the range from 13 to 80 K was observed for the 4F9/2 (2H9/2) state of Er3+ in the YLF crystal. It is explained by the redistribution of excited electronic states population of erbium ions over the higher lying Stark levels with different MR probabilities. A good fit of experimental temperature dependence (including the dropping part of the experimental curve) was obtained for single-frequency model (hωeff=450 cm−1) with W01=8.0×104 s−1 and W02=4.7×104 s−1 accounting Boltzmann distribution of population over two excited Stark levels of the excited state of erbium ions. Employment of this model improves the fit between the experiment and the theory for the 5F5 state of Ho3+ ion in YAG as well. Strong influence of the parameters of the non-linear theory of MR, i.e. the reduced matrix elements U(k) of electronic transitions and the phonon factor of crystal matrix η on the spontaneous MR rates was observed experimentally. The smaller these parameters the slower the spontaneous MR W0. This fact can be used for searching new active crystal laser media for the mid-IR generation.  相似文献   

10.
This paper reports the effects of beryllium (Be) doping in In0.53Ga0.26Al0.2As layers grown lattice-matched to InP (100) substrates by molecular beam epitaxy (MBE). Hall effect measurements showed that hole concentrations as high as 2.94×1019 cm−3 was achieved, and the concentration decreased with further increase in the Be cell temperature. Depending on the hole concentration, good optical quality was achieved as verified by photoluminescence (PL) measurements. X-ray diffraction (XRD) measurements showed lattice mismatch values of lower than 8.6×10−4 in most samples. An intense PL peak (5 K) at 1.089 eV which is attributed to band-acceptor recombination was observed from the sample with the lowest hole concentration of 2.28×1016 cm−3. This sample exhibited the lowest PL full-width at half maximum (FWHM) of 8 meV (at 5 K) for the free exciton recombination. To the best of our knowledge, this is the lowest value reported to date. An increase in the hole concentration caused a merging of the band-acceptor and free excitor recombination lines to form a broad PL spectrum. A shift in the free exciton peak position in the PL spectrum was observed following an increase in the hole concentration, an effect which was probably due to degeneracy.  相似文献   

11.
Molybdenum ions generated by a metal vapour vacuum arc (MEVVA) ion source were implanted into pure iron at doses of 1 × 1017 and 3 × 1017 ions cm−2 with an extraction voltage of 45 kV. Auger electron spectroscopy (AES) sputtering depth profiles, X-ray photoelectron spectroscopy (XPS) analysis, X-ray diffraction (XRD) analysis, microhardness and the residual stress of the implanted specimen were studied. The results show that molybdenum atoms exist in the implanted layer at a maximum concentration 20 at.%. A new phase (Fe3C) is formed in the specimens implanted higher doses due to carbon incorporation during sputtering of the natural oxide film from the implanted surface. The Fe2Mo phase is formed in both dose regimes. Residual compressive stresses of 310 and 560 MPa were measured on the surfaces of the specimens after molybdenum ion implantation at 1 × 1017 and 3 × 1017 ions/cm2 respectively due to a local expansion of the lattice in the near-surface region. Due to the existence of residual compressive stress and the formation of the new phases, the microhardness of pure iron specimens was increased from 264 to 325 and 333 kgf mm−2 by molybdenum ion implantation at 1 × 1017 and 3 × 1017 ions cm−2 respectively.  相似文献   

12.
The optical absorption (hν) and Raman and Infra Red (IR) spectra of Si doped GaN layers deposited on sapphire through buffer layers have been recorded for electron concentrations from 5×1017 to 5×1019 cm−3. The (hν) values deduced from photothermal deflection spectroscopy (0.5–3.5 eV) and IR absorption (0.15–0.5 eV) vary between 50 and 104 cm−1 showing doping dependant free electron absorption at low energy, doping independant band gap at high energy, and slowly doping dependant defect absorption in the medium energy range. In our micro Raman geometry, maxima appear or can be deduced near the frequency expected for either the A1(LO) or the A1(LO+) modes split from the A1(LO) mode by plasmon phonon interaction. There is a large systematic evolution in the expected way for the IR reflectivity.  相似文献   

13.
X-ray diffraction (XRD), current–voltage (IV), capacitance–voltage (CV), deep-level transient Fourier spectroscopy (DLTFS) and isothermal transient spectroscopy (ITS) techniques are used to investigate the thermal annealing behaviour of three deep levels in Ga0.986In0.014As heavily doped with Si (6.8 × 1017 cm−3) grown by molecular beam epitaxy (MBE). The thermal annealing was performed at 625 °C, 650 °C, 675 °C, 700 °C and 750 °C for 5 min. XRD study shows good structural quality of the samples and yields an In composition of 1.4%. Two main electron traps are detected by DLTFS and ITS around 280 K, with activation energies of 0.58 eV and 0.57 eV, capture cross sections of 9 × 10−15 cm2 and 8.6 × 10−14 cm2 and densities of 2.8 × 1016 cm−3 and 9.6 × 1015 cm−3, respectively. They appear overlapped and as a single peak, which divides into two smaller peaks after annealing at 625 °C for 5 min.

Annealing at higher temperatures further reduces the trap concentrations. A secondary electron trap is found at 150 K with an activation energy of 0.274 eV, a capture cross section of 8.64 × 10−15 cm2 and a density of 1.38 × 1015 cm−3. The concentration of this trap level is also decreased by thermal annealing.  相似文献   


14.
InP single crystal layers were grown by liquid phase epitaxy (LPE) on semi-insulating InP:Fe substrates with praseodymium added to the melt. Room temperature Hall effect measurements revealed p-type conductivity of the layers with the hole concentration 6×1014 cm−3 and mobility 150 cm2 V−1 s−1. By measuring temperature dependence of the hole concentration the binding energy of the dominant acceptor was determined as 223 meV. A photoluminescence line was found at 1.195 eV, close to the previously estimated no-phonon line of Ge acceptor transitions in Ge doped n-type InP. It was concluded that Ge acceptors cause the p-type conductivity of the grown layers.  相似文献   

15.
We report results of high-dose Al-ion implantation in 4H–SiC. Using multiple energy implantation techniques, box profiles were realized with targeted concentrations: 3.33×1018 to 1021 cm−3. The depths were 190 and 420 nm. The implantation energies ranged from 30 to 200 keV. The implantation and annealing temperatures were 650 and 1670°C, respectively. First, infrared investigations were done to assess the surface quality of the samples before and after annealing. Next, the conduction mechanism was investigated. Performing Hall measurements, we found that the room temperature free hole concentration varies like pH=Ct/105 (cm−3), where Ct is the targeted Al-concentration, with a high level of electronic mobility. For the targeted concentration 1021 cm−3, this resulted in an active layer with 95 mΩ cm resistivity and, at room temperature, a free hole concentration of 1019 cm−3.  相似文献   

16.
Polycrystalline thin films of iron, nickel and aluminium were bombarded with CH4+ ions in the dose range from 1 × 1016 to 1.2 × 1018 ions cm−2 at room temperature and with energies between 15 and 50 keV. The formation of carbides was indicated in the cases of both iron and nickel from high voltage transmission electron micrographs and selected area diffraction patterns. No such compound formation in the case of aluminium could be detected. The carbides of iron and nickel were found to be stable on annealing up to 350 °C for 2 h.  相似文献   

17.
The process of ion-activated oxygen adsorption on silicon has been investigated using an experimental concept with simultaneous deposition of silver films. Auger electron spectroscopy in combination with sputter depth profiling is subsequently performed to determine the amount of oxygen adsorbed at the Ag---Si interface. Noble gas ions (4He+, 20Ne+ and 40Ar+)with energies between 50 and 175 keV were used, and it was found that for substrate temperatures of 300–700 K the oxygen adsorption depends strongly on ion mass, ion energy and ion flux density. For flux densities of 5 × 1011 cm−2 s−1 or less, adsorption dominates and, in particular, for light-ion bombardment the majority of adsorbed oxygen atoms form chemical bonds with the silicon surface atoms (Si---O). However, for heavy ions, physical sputtering starts to compete and limits the effective rate of adsorption. At sufficiently high ion fluxes the adsorption starts to decrease, and for all ions and energies used in this work it is found that, if the electronic energy deposition density exceeds a critical value of about 1.2 × 1021 eV cm−2 s−1, dissociation of the Si---O bonds prevails with a corresponding loss in the adsorbed oxygen quantity.  相似文献   

18.
The synthesis and photoluminescent (PL) properties of calcium stannate crystals doped with europium grown by mechanically activated in a high energy vibro-mill have been investigated. The characteristics of Ca2SnO4:Eu3+ phosphors were found to depend on the amounts of europium ions. The XRD profiles revealed that the system, (Ca1−xEux)2SnO4, could form stable solid solutions in the composition range of x = 0–7% after being calcined at 1200 °C. The calcined powders emit bright red luminescence centered at 618 nm due to 5D0 → 7F2 electric dipole transition. Both XRD data and the emission ratio of (5D0 → 7F2)/(5D0 → 7F1) reveal that the site symmetry of Eu3+ ions decreases with increasing doping concentration. The maximum PL intensity has been obtained for 7 mol% concentration of Eu3+ in Ca2SnO4.  相似文献   

19.
An amorphous transparent conductive oxide thin film of molybdenum-doped indium oxide (IMO) was prepared by reactive direct current magnetron sputtering at room temperature. The films formed on glass microscope slides show good electrical and optical properties: the low resistivity of 5.9 × 10− 4 Ω cm, the carrier concentration of 5.2 × 1020 cm− 3, the carrier mobility of 20.2 cm2 V− 1 s− 1, and an average visible transmittance of about 90.1%. The investigation reveals that oxygen content influences greatly the carrier concentration and then the photoelectrical properties of the films. Atomic force microscope evaluation shows that the IMO film with uniform particle size and smooth surface in terms of root mean square of 0.8 nm was obtained.  相似文献   

20.
The dielectric properties and electrical conductivity of AlN films deposited by laser-induced chemical vapour deposition (LCVD) are studied for a range of growth conditions. The static dielectric constant is 8.0 ± 0.2 over the frequency range 102−107 Hz and breakdown electric fields better than 106 V cm−1 are found for all films grown at temperatures above 130°C. The resistivity of the films grown under optimum conditions (substrate temperature above 170°C, NH3/TMA flow rate ratio greater than 300 and a deposition pressure of 1–2 Torr) is about 1014 Ω cm and two conduction mechanisms can be identified. At low fields, F < 5 × 105 V cm−1 and conductivity is ohmic with a temperature dependence showing a thermal activation energy of 50–100 meV, compatible with the presumed shallow donor-like states. At high fields, F > 1 × 106 V cm−1, a Poole-Frenkel (field-induced emission) process dominates, with electrons activated from traps at about 0.7–1.2 eV below the conduction band edge. A trap in this depth region is well-known in AlN. At fields between 4 and 7 × 105 V cm−1 both conduction paths contribute significantly. The degradation of properties under non-ideal growth conditions of low temperature or low precursor V/III ratio is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号