首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vinyl ester resins are often utilized in advanced naval composite structures due to the relatively low viscosity of the resin and the capability to cure at ambient temperatures. These qualities facilitate the production of large naval composite structures using resin infusion techniques. Vinyl ester monomer was synthesized from the epoxy resin to overcome processing challenges associated with volatility of the styrene monomer in vinyl ester resin. In this research we have investigated the use of a calendering approach for dispersion of multi-walled carbon nanotubes in vinyl ester monomer, and the subsequent processing of nanotube/vinyl ester composites. The high aspect ratios of the carbon nanotubes were preserved during processing and enabled the formation of a conductive percolating network at low nanotube concentrations. An electrical percolation threshold below 0.1 wt.% carbon nanotubes in vinyl ester was observed. Formation of percolating carbon nanotube networks at low concentration holds promise for the utilization of carbon nanotubes as in situ sensors for detecting deformation and damage in advanced naval composites.  相似文献   

2.
Multiphase composite materials filled with multiwall carbon nanotubes (MWCNTs), short nickel-coated carbon fibers and millimeter-long carbon fibers with various weight fractions and compositions are developed and used for the design of wide-band thin radar-absorbing screens. The effective complex permittivity of several composite samples is measured in the frequency range from 8 GHz to 18 GHz. The obtained results show that the addition of the MWCNTs into the mixture allows tuning the EM properties of the composite filled with the short nickel-coated fibers. Numerical simulations are also performed in order to design new radar-absorbing shields. Single-layer and bi-layer thin dielectric Salisbury screens are designed to exhibit minimum reflection coefficient at 10 GHz and at 15 GHz, and maximum bandwidth at −10 dB. It results that the total thickness of the screen can be reduced below 2 mm by using a lossy sheet made with the composite filled with MWCNTs and nickel-coated carbon fibers, whereas the bandwidth at −10 dB can exceed 6 GHz in a bi-layer structure.  相似文献   

3.
A novel elastomer foamed nanocomposite has been developed with high electromagnetic dissipation and shielding properties. This light weight foamed fluorocarbon incorporates multi-walled carbon nanotubes at low loading concentrations to achieve levels of conductivity and energy shielding that surpass the requirements for electromagnetic static discharge (ESD) and electromagnetic interference (EMI) shielding. Foaming the elastomer reduces that weight by 30% with minimal impact on ESD or EMI characteristics. The percolation threshold is at about 2% carbon nanotubes and the saturation conductivity occurs at 8% carbon nanotubes by weight. Combining the good electrical properties with the flexibility and fluid resistance of fluorocarbon yields a very versatile yet light weight material for a variety of ESD and EMI applications.  相似文献   

4.
In this study, three different types of multi-wall carbon nanotubes (MWCNTs) were compared as nanostructured reinforcements in epoxy polymers: commercially available CVD-MWCNTs, synthesised in an industrial process, aligned-CVD-MWCNTs and arc-grown MWCNTs, both obtained from a lab-scale processes. The nanocomposite properties were characterised by means of electron microscopy, rheological, electrical and mechanical methods. Industrial CVD-MWCNTs are favourable for the implication of an electrical conductivity in the epoxy due to their high tendency to form conducting networks. The less entangled structure of aligned-CVD-MWCNTs turns out to be favourable for an easy dispersion and low viscosity in epoxy at similar conductivities compared to the CVD-MWCNTs. Additionally, they provide the highest increase in fracture toughness (∼17%). Arc-grown MWCNTs do not offer any electrical conductivity in epoxy without sufficient purification methods. Their high level of impurities and short length further complicate the transfer of their good electrical and mechanical properties into the nanocomposite.  相似文献   

5.
We are presenting a method of synthesizing three-dimensional self-assembled multi-walled carbon nanotube (MWCNT) nanopaper on hydrophilic polycarbonate membrane. The process is based on the very well-defined dispersion of nanotube and controlled pressure vacuum deposition procedure. The morphology and structure of the nanopaper are characterized with scanning electronic microscopy (SEM) over a wide range of scale sizes. A continuous and compact network observed from the microscopic images indicates that the MWCNT nanopaper could have highly conductive property. As a consequence, the sensing properties of conductive MWCNT nanopaper are characterized by functions of temperature and water content. Meanwhile, in combination with shape-memory polymer (SMP), the conductive MWCNT nanopaper facilitates the actuation in SMP nanocomposite induced by electrically resistive heating. Furthermore, the actuating capability of SMP nanocomposite is utilized to drive up a 5-gram mass from 0 to 30 mm in height.  相似文献   

6.
In this paper, electrical and mechanical properties of Poly (p-phenylene sulfide) (PPS)/multi-wall carbon nanotubes (MWNTs) nanocomposites were reported. The composites were obtained just by simply melt mixing PPS with raw MWNTs without any pre-treatment. The dispersion of MWNTs and interfacial interaction were investigated through SEM &TEM and Raman spectra. The rheological test and crystallization behavior were also investigated to study the effects of MWNTs concentration on the structure and chain mobility of the prepared composites. Though raw MWNTs without any pre-treatment were used, a good dispersion and interaction between PPS and MWNTs have been evidenced, resulting in a great improvement of electrical properties and mechanical properties of the composites. Raman spectra showed a remarkable decrease of G band intensity and a shift of D bond, demonstrating a strong filler–matrix interaction, which was considered as due to π–π stacking between PPS and MWNTs. The storage modulus (G′) versus frequency curve presented a plateau above the percolation threshold of about 2–3 wt% with the formation of an interconnected nanotube structure, indicative of ‘pseudo-solid-like’ behavior. Meanwhile, a conductive percolation threshold of 5 wt% was achieved and the conductivity of nanocomposites increased sharply by several orders of magnitude. The difference between electrical and rheological percolation threshold, and the effect of critical percolation on the chain mobility, especially on crystallization behavior of PPS, were discussed. In summary, our work provides a simple and fast way to prepare PPS/MWNTs nanocomposites with good dispersion and improved properties.  相似文献   

7.
Nanocomposites of poly(methyl methacrylate) (PMMA) containing various multi-walled carbon nanotubes (MWCNT) contents were prepared using melt mixing. Several techniques were employed to study the influence of the MWCNT addition on the thermal, mechanical, electrical and dielectric properties of the PMMA matrix. The electrical percolation threshold (pc) was found to be 0.5 vol.% by performing AC and DC conductivity measurements. Significantly high conductivity levels (σdc) were achieved: σdc exceeds 10−2 S/cm already at 1.1 vol.%, the criterion for EMI shielding (σdc > 10−1 S/cm) is fulfilled at 2.9 vol.%, and the highest loaded sample (5.2 vol.%) gave a maximum value of 0.5 S/cm. Dielectric relaxation spectroscopy measurements in broad frequency (10−1−106 Hz) and temperature ranges (−150 to 170 °C) indicated weak polymer-filler interactions, in consistency with differential scanning calorimetry and dynamic-mechanical analysis findings. Weak polymer-filler interactions and absence of crystallinity facilitate the achievement of high conductivity levels in the nanocomposites.  相似文献   

8.
Carbon nanotube (CNT)/cellulose composite materials were fabricated in a paper making process optimized for a CNT network to form on the cellulose fibers. The measured electric conductivity was from 0.05 to 671 S/m for 0.5–16.7 wt.% CNT content, higher than that for other polymer composites. The real permittivities were the highest in the microwave region. The unique CNT network structure is thought to be the reason for these high conductivity and permittivity values. Compared to other carbon materials, our carbon CNT/cellulose composite material had improved parameters without decreased mechanical strength. The near-field electromagnetic shielding effectiveness (EMI SE) measured by a microstrip line method depended on the sheet conductivity and qualitatively matched the results of electromagnetic field simulations using a finite-difference time-domain simulator. A high near-field EMI SE of 50-dB was achieved in the 5–10 GHz frequency region with 4.8 wt.% composite paper. The far-field EMI SE was measured by a free space method. Fairly good agreement was obtained between the measured and calculated results. Approximately 10 wt.% CNT is required to achieve composite paper with 20-dB far-field EMI SE.  相似文献   

9.
The ever-increasing demands for higher energy density and higher power capacity of Li-ion secondary batteries have led to search for electrode materials whose capacities and performance are better than those available today. Carbon nanotubes (CNTs), because of their unique 1D tubular structure, high electrical and thermal conductivities and extremely large surface area, have been considered as ideal additive materials to improve the electrochemical characteristics of both the anode and cathode of Li-ion batteries with much enhanced energy conversion and storage capacities. Recent development of electrode materials for LIBs has been driven mainly by hybrid nanostructures consisting of Li storage compounds and CNTs. In this paper, recent advances are reviewed of the use of CNTs and the methodologies developed to synthesize CNT-based composites for electrode materials. The physical, transport and electrochemical behaviors of the electrodes made from composites containing CNTs are discussed. The electrochemical performance of LIBs affected by the presence of CNTs in terms of energy and power densities, rate capacity, cyclic life and safety are highlighted in comparison with those without or containing other types of carbonaceous materials. The challenges that remain in using CNTs and CNT-based composites, as well as the prospects for exploiting them in the future are discussed.  相似文献   

10.
The present study demonstrates a novel mixing approach for achieving a good dispersion of carbon nanotubes (CNTs) in a styrene-butadiene rubber (SBR), which leads to a significant improvement in electrical properties. Our mixing technique consists of (1) pretreatment by ultrasonication to disentangle the bundles of CNTs in organic solvent and (2) “rotation-revolution” mixing of the CNTs with SBR without mechanical shear, which prevents CNTs from collapsing during the mixing process. The present mixing method does not require the addition of any dispersing agents (amphiphilic molecules) or chemical modification of the CNTs to obtain a good dispersion. Compared with a conventional Banbury mixing technique, our method leads to a significant decrease in the percolation threshold (less than 1 phr), where the electrical conductivity suddenly increases due to the formation of percolation networks of CNTs in SBR. This is because the aspect ratio of the CNTs was maintained even after the mixing process, whereas CNTs were broken during the conventional Banbury mixing. The effect of using different types of CNTs on electrical conductivity was also investigated. The results show that the percolation threshold is largely related to the structural quality (graphitization) of the CNTs as well as their aspect ratio.  相似文献   

11.
Advanced composites, such as those used in aerospace applications, employ a high volume fraction of aligned stiff fibers embedded in high-performance polymers. Unlike advanced composites, polymer nanocomposites (PNCs) employ low volume fraction filler-like concepts with randomly-oriented and poorly controlled morphologies due to difficult issues such as dispersion and alignment of the nanostructures. Here, novel fabrication techniques yield controlled-morphology aligned carbon nanotube (CNT) composites with measured non-isotropic properties and trends consistent with standard composites theories. Modulus and electrical conductivity are maximal along the CNT axis, and are the highest reported in the literature due to the continuous aligned-CNTs and use of an unmodified aerospace-grade structural epoxy. Rule-of-mixtures predictions are brought into agreement with the measured moduli when CNT waviness is incorporated. Waviness yields a large (10×) reduction in modulus, and therefore control of CNT collimation is seen as the primary limiting factor in CNT reinforcement of composites for stiffness. Anisotropic electron transport (conductivity and current-carrying capacity) follows expected trends, with enhanced conductivity and Joule heating observed at high current densities.  相似文献   

12.
We review experimental and theoretical work on electrical percolation of carbon nanotubes (CNT) in polymer composites. We give a comprehensive survey of published data together with an attempt of systematization. Parameters like CNT type, synthesis method, treatment and dimensionality as well as polymer type and dispersion method are evaluated with respect to their impact on percolation threshold, scaling law exponent and maximum conductivity of the composite. Validity as well as limitations of commonly used statistical percolation theories are discussed, in particular with respect to the recently reported existence of a lower kinetic (allowing for re-aggregation) and a higher statistical percolation threshold.  相似文献   

13.
We report on the preparation of nanocomposites consisting of laser synthesized single-walled carbon nanotubes (C-SWNTs) reinforcing a polyurethane. Prior to their incorporation into the polymer matrix, the C-SWNTs were purified, and characterized by means of various techniques. The purification in nitric acid added carboxylic groups to the C-SWNTs. A procedure to properly disperse the nanomaterials in the polymer was developed involving high shear mixing using a three-roll mill and a non-covalent functionalization of the nanotubes by zinc protoporphyrin IX molecule. The incorporation of the C-SWNTs into the resin led to an increase of the viscosity and the apparition of a slight shear-thinning behavior. A further increase of the shear-thinning behavior using fumed silica particles enabled the direct-write fabrication of microbeams. Mechanical characterization revealed significant increase in both strength (by ∼64%) and modulus (by more than 15 times). These mechanical enhancements are believed to be a consequence of the successful covalent and the non-covalent functionalizations of the nanotubes.  相似文献   

14.
Carbon nanotube (CNT) reinforced composites have been identified as promising structural materials for the mechanical components of microelectromechanical systems (MEMS), potentially leading to advanced performance. High alignment and volume fraction of CNTs in the composites are the prerequisites to achieve such desirable mechanical characteristics. In particular, horizontal CNT alignment in composite films is necessary to enable high longitudinal moduli of the composites which is crucial for the performance of microactuators. A practical process has been developed to transfer CNT arrays from vertical to horizontal alignment which is followed by in situ wetting, realign and pressurized consolidation processes, which lead to a high CNT volume fraction in the range of 46-63%. As a result, SU8 epoxy composite films reinforced with horizontally aligned CNTs and a high volume faction of CNTs have been achieved with outstanding mechanical characteristics. The transverse modulus of the composite films has been characterised through nanoindentation and the longitudinal elastic modulus has been investigated. An experimental transverse modulus of 9.6 GPa and an inferred longitudinal modulus in the range of 460-630 GPa have been achieved, which demonstrate effective CNT reinforcement in the SU8 matrix.  相似文献   

15.
By combining a high sensitive dielectric sensor into a parallel plate rheometer, the time evolution of the dielectric properties of polyethylene/carbon nanotube composites was measured in the molten state under oscillatory shear. Composites with single- (SWCNT) or multiwall (MWCNT) carbon nanotubes initially decrease its conductivity proportional to the oscillatory shear-strain applied. After this initial drop, some composites increase the conductivity under these non-quiescent conditions reflecting a possible shear-induced agglomeration process. The latter based on the complex permittivity spectrum showing a shortening in the CNT-CNT distances in these composites after shear. At concentrations below the electrical percolation threshold, the presence of both SWCNTs and MWCNTs reduces the DC conductivity of the molten matrices. This result shows that carbon nanotubes can act as a scavenger for impurities or additives present in commercial polyethylenes.  相似文献   

16.
Electromechanically responsive polymer nanocomposite thin films can provide embedded microscale sensing elements for unobtrusive monitoring of strain, torque and pressure particularly for composite structures. Thin nanocomposite carbon–polyimide films with thicknesses up to 90 μm were produced with carbon contents that yield semiconducting behaviour attributable to distance dependent electron hopping between isolated nanoparticles. The tensile modulus and the strain at break indicated minimum interaction between polymer and nanoparticle surfaces. A decreasing storage modulus with increasing temperature indicated increasing free volume inducing polymer chain motions.  相似文献   

17.
Enhancing the thermal conductivity and reducing the thermal expansion for electronic packaging applications can be achieved by compositing carbon nanofibers in copper-matrices. Though achieving these optimal thermal properties is theoretically possible, such composites are currently not available due to many unresolved practical problems. Conventional compositing processes are incapable of obtaining the desired fiber distribution while controlling the fiber–matrix interfaces for effective heat and load transfers. In this paper, three different powder metallurgy based processes are presented; two based on conventional techniques and the third a relatively new method. The first method is basically the conventional powder metallurgy process. The second and the third methods are also powder metallurgy processes with different ways of modifying the surface of the fibers using either electroless coating or the novel salt decomposition method. It is shown that the salt decomposition method is capable of achieving the desired high thermal conductivity values while the thermal expansion values remain the same in all the three processes.  相似文献   

18.
We have fabricated composites of SU-8 polymer and three different types of carbon nanoparticles (NPs) using ultrasonic mixing. Structures of composite thin films have been patterned on a characterization chip with standard UV photolithography. Using a four-point bending probe, a well defined stress is applied to the composite thin film and we have demonstrated that the composites are piezoresistive. Stable gauge factors of 5–9 have been measured, but we have also observed piezoresistive responses with gauge factors as high as 50. As SU-8 is much softer than silicon and the gauge factor of the composite material is relatively high, carbon nanoparticle doped SU-8 is a valid candidate for the piezoresistive readout in polymer based cantilever sensors, with potentially higher sensitivity than silicon based cantilevers.  相似文献   

19.
The sensing properties of polypropylene (PP)/poly(ε-caprolactone) (PCL) blends containing multiwalled carbon nanotubes (MWNT) were studied in terms of their electrical resistance change in presence of liquids (solvents). The preparation of co-continuous blends based on the double percolation concept was done by melt mixing of electrically conductive PCL composites containing 3 wt.% MWNT and neat PP in ratios of 30:70, 40:60, and 50:50. The electrical resistance change of the PCL-MWNT composites and blends was monitored in a solvent immersion/drying cycle. Various solvents, such as n-hexane, ethanol, methanol, water, toluene, chloroform, and tetrahydrofuran were successfully detected, yielding different responses and reversibility of the resistance changes.PP and PCL were tested separately for solvent sorption using ethanol and n-hexane, both showing a low sorption of n-hexane. Ethanol sorption was large for PCL and almost absent for PP. The 50/50 blend composites with 3 wt.% MWNT in the PCL phase presented larger resistance changes for n-hexane, showing larger sensing ability for this solvent compared to PCL composites with 1 and 3 wt.% loadings. The opposite response was observed for immersion in ethanol where the PCL-MWNT composites showed larger changes than the blends. As the ratio of the conductive PCL phase over PP in the blend composition (i.e. the overall MWNT content) decreased, larger resistance changes were observed. The liquid sensing properties of compression-moulded discs and melt-drawn filaments were compared indicating higher responses for the discs.  相似文献   

20.
CEC/ATO and CEC/BTO/ATO nanocomposite films were fabricated by introducing barium titanate (BTO) and antimony tin oxide (ATO) in cyanoethyl cellulose (CEC) via simple solution blending technique. The morphology, microstructure, thermal stability, mechanical, optical and dielectric properties of the nanocomposite films were investigated. The results indicated that CEC/BTO/ATO nanocomposite films possessed better dielectric property and mechanical property compared with CEC/ATO nanocomposite films. This could be ascribed to the homogeneous dispersion of ATO in CEC matrix due to the introduction of BTO. The nanocomposite films with only ATO nanoparticles had a certain optical transmissibility. In addition, all the nanocomposite films possessed better thermal stability than CEC polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号