首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
以氮掺杂石墨烯为基底,采用原子气相沉积法将纳米V_2O_5薄膜均匀的生长在多孔石墨烯纳米片上。由于V_2O_5与石墨烯间较强的化学键合作用,多孔石墨烯构建的优异的离子和电子传输路径,当复合材料电极作为锂离子电池负极时展现出优异的电化学性能,在200mA/g电流密度下具有良好的容量保持率,50次循环后,整个电极仍可获得608mAh/g的放电容量。  相似文献   

2.
采用回流法以KMn O4和Mn SO4为前驱体,硫酸亚铁铵[(NH4)2Fe(SO4)2]为铁源,制备出Fe掺杂的Mn O2纳米棒。通过X射线衍射仪、扫描电子显微镜对样品的结构和形貌进行表征,并使用循环伏安法、恒电流充放电法研究了样品的电化学性能。结果表明:当使用合适量的(NH4)2Fe(SO4)2时,制备出直径约为80 nm,长度为0.8~2μm的Fe掺杂Mn O2纳米棒。作为电极材料,Fe掺杂Mn O2纳米棒表现出良好的电化学性能,在1.0 A/g电流密度下,比电容达到620 F/g,比相同条件下纯Mn O2的容量高出56%。  相似文献   

3.
以十二烷基苯磺酸钠(SDBS)为表面活性剂采用水热法合成了Zn_2SnO_4纳米颗粒,反应过程中添加和不添加SDBS会对样品产生影响。添加SDBS合成的样品颗粒粒径较小,约为70 nm,并且粒径分布均匀。将其用作锂离子电池的负极材料,在50 mA/g的电流密度下进行充放电循环,具有1 619 mAh/g的首次放电比容量,在50、100、200、400、600和1000 mA/g的电流密度下进行倍率性能测试,在各电流密度下循环5次后,材料的放电比容量分别为883、658、509、380、295、165 mAh/g,当电流密度重新返回50 mA/g时,电极仍具有716 mAh/g的比容量,各放电比容量均高于同条件下没有添加SDBS的样品的比容量。  相似文献   

4.
《电池》2015,(3)
以纳米三氧化二铁(Fe2O3)粒子为铁源,在每批次3 kg的中试规模下制备纳米级磷酸铁锂(LiFePO4)正极材料,考察碳源种类和加入量对材料电化学性能的影响。在中试条件下,等比例混合碳源(葡萄糖115 g,酚醛树脂107.5 g),可得到更好的电化学性能,制备的材料比表面积为14.06 m2/g,达到良好的加工性能要求,在2.0~4.2 V充放电,0.1 C首次放电比容量为159 m Ah/g;以3.0 C循环200次,放电容量保持率为96%。  相似文献   

5.
通过机械混合法将Si和TiO2复合合成锂离子电池复合负极材料。采用XRD、SEM和电化学测试等手段对复合材料进行一系列表征和测试,考察了不同TiO2复合量对Si负极材料性能的影响。结果表明:复合后材料的首次库仑效率明显提高,循环性能也有明显的改善。当Si与TiO2质量比为1∶1时,电极材料的首次放电比容量为2 099.0m Ah/g,首次库仑效率为78.7%,0.5 A/g电流密度下首次放电比容量为1 112.1 m Ah/g,循环50次后比容量保持在480.4 m Ah/g。  相似文献   

6.
以多孔SiO_2为内核,利用TiO_2与碳外层包覆制备出双壳结构(SiO_2@TiO_2@C)作为锂离子电池的负极材料。TiO_2纳米粒子均匀地嵌入具有多孔的SiO_2粒子内部和表面,形成SiO_2@TiO_2核-壳结构。碳包覆形成的外壳可以很好地避免SiO_2与电解质直接接触,因此形成稳定的SEI膜。得到的SiO_2@TiO_2@C核-壳-壳材料具有疏松的多孔结构、高比容量、优异的倍率性能和稳定的长期循环性能。比表面积和总孔隙率分别为261.3 m~2/g和0.46 cm~3/g,在电流密度为0.1 A/g时,首次库仑效率为74.7%,100次循环后的放电比容量为638 m Ah/g,容量保持率大于98.5%。这些结果表明所得到的复合材料有很好的前景,在改进各种储能材料方面可能具有潜在的应用。  相似文献   

7.
通过球磨和150℃加热处理,用单质硫与KS6合成石墨合成了硫(S)/碳(C)复合材料。SEM、XRD和比表面积分析表明:复合材料的粒径约为100μm,大部分硫以非晶态分散于碳骨架中,比表面积为0.04 m2/g。循环伏安扫描和恒流充放电测试表明:复合材料的容量利用率高、倍率性能和循环稳定性好。以100 mA/g在1.0~3.0 V循环,复合材料中硫的首次放电比容量为1 715 mAh/g,在室温下第80次循环的放电比容量为1 030 mAh/g。  相似文献   

8.
采用具有超精细网络结构、良好分子取向、高结晶度和高聚合度等特性的细菌纤维素(BC)为基体碳源,通过添加KOH活化剂,在300℃预碳化2 h后,再在900℃碳化2 h,制备氮掺杂的具有较高比表面积(1 479 m~2/g)、孔分布范围广(0.2~5.0 nm)的分层次多孔碳纤维材料(NPC)。将硫单质通过熔融注入到NPC孔洞中,获得S-NPC复合材料。以复合正极材料组装电池,在1.5~2.7 V充放电,0.1 C首次放电比容量达1 137 mAh/g,经500次循环,比容量为890 mAh/g。平均每次循环,容量仅衰减约0.1%,且库仑效率高于98%。  相似文献   

9.
采用三种不同的化学合成方法制备出形貌不同、结晶水含量不同的氟化铁[Fe F_3·(H_2O)_(0.33)和β-Fe F_3·3H_2O]材料,并对其结构、形貌进行表征,同时研究了氟化铁作为正极材料的锂电性能。实验结果表明,在三种材料中,介孔球状的Fe F_3·(H_2O)_(0.33)的电化学性能最为理想,β-Fe F_3·3H_2O方块的电化学性能其次,块状的Fe F_3·(H_2O)_(0.33)性能最差。其中,球状的Fe F_3·(H_2O)_(0.33)在142 mA/g电流密度下,循环充放电100圈后放电比容量仍然能够保持在159.1 mAh/g;方块状的β-Fe F_3·3H_2O在474 mA/g的大电流密度下,循环充放电50圈后放电比容量也可以维持在129.2 mAh/g。介孔材料大的比表面积,不仅增加了电解液和电极之间的接触面积,降低了锂离子的扩散路径,而且也能够缓冲循环过程中的体积变化,这些因素共同促进了其优异的电化学性能。  相似文献   

10.
赵明  王晓芳  高娇阳  刘伟  刘贵昌  宋朝霞 《电源技术》2012,36(9):1313-1315,1322
以KMnO4和MnCl2·4 H2O为原料,采用液相化学沉淀法合成纳米结构MnO2电极材料,并添加一定量的K2Cr2O7 对其进行改性.通过X射线衍射(XRD),扫描电子显微镜(SEM)等手段对MnO2的结构形貌进行表征;利用循环伏安法和恒流充放电等方法研究了MnO2在1 mol/L KOH电解液中的电容行为.测试结果表明,K2Cr2O7的存在导致了MnO2由γ-MnO2向α-MnO2晶型的转变以及MnO2纳米棒的形成.MnO2纳米棒的直径约为80 nm,长度约为0.5~2 μm,并且MnO2电极材料的晶化程度和电化学性能都得到了提高.当K2Cr2O7添加量为1O%(与KMnO4的质量比)时,在0.3A/g和1 A/9电流密度下,电极比容量分别为271 F/g和199 F/g,大约是未添加K2Cr2O7条件下制备的电极的2倍.Cr掺杂MnO2纳米棒表现出优异的高倍率性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号