共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
针对现有直觉模糊核匹配追踪算法采用贪婪算法搜索最优基函数而导致学习时间过长的问题,汲取了粒子群优化算法全局搜索能力强、收敛速度快的优势对最优基函数的搜索过程进行优化,提出了一种基于粒子群优化的直觉模糊核匹配追踪算法,并将该算法应用于时效性要求更高的空天目标识别领域.实验结果表明,与传统方法相比,本文方法在识别率相当的情况下有效缩短一次匹配追踪时间,计算效率明显提高,且所得模型具有稀疏性好,泛化能力高等优点,特别适用于兼顾识别率和实时性的应用领域. 相似文献
3.
4.
5.
为提高局部模糊聚类算法(WFLICM)对噪声图像 分割的抗噪性,克服模糊聚类图像分割算法对初 始聚类中心的敏感性及易陷入局部最优问题,在WFLICM算法的基础上提出一种基于粒子群 优化的融合 局部和非局部空间信息的模糊聚类图像分割算法(PSO-WMNLFCM)。首先,利用粒子群优化 算法的全局 寻优能力得到最优粒子,并以此粒子作为模糊聚类算法的初始聚类中心。其次,用像素的非 局部空间信息 替换模糊因子中的局部邻域值,产生新的目标函数。最后,由拉格朗日乘子法最小化目标函 数,得到隶属 度和聚类中心的更新公式,从而完成图像分割。仿真结果表明,PSO-WMNLFCM算法相比于 模糊局部聚 类(FLICM)算法、局部模糊权重(WFLICM)算法、非局部模糊聚类(NLFCM)算法、非局部模 糊聚类 (MNLFCM)算法、基于粒子 群的局部模糊聚类(PSO-FLICM)算法的划分系数提高了20.92%,20.51%,24.84%,1.44%,23.28%左右。 相似文献
6.
在继承综合学习粒子群算法(Comprehensive Learning Particle Swarm Optimizer,CLPSO)全局探索优势的基础上,引入具有高效收敛性能的传统局部搜索(Orthodox Local Search,OLS)方法,提出了基于拟熵自适应启动局部搜索策略的混合粒子群算法(Hybrid Particle Swarm Optimization algorithm with Adaptive starting strategy of Local Search based on Quasi-Entropy,ALSQE-HPSO).采用拟熵指标解决何时启动OLS这一关键问题.对8个标准函数的10维和20维问题的测试结果,表明了ALSQE-HPSO算法的性能优势.本文提出的算法也与包含两种基于CLPSO的改进算法和一种带OLS的粒子群算法在内的其他6种改进粒子群算法进行了对比,实验结果表明ALSQE-HPSO算法的性能优于对比算法. 相似文献
7.
8.
基于交叉和自适应权重的混合粒子群优化算法 总被引:1,自引:0,他引:1
针对粒子群算法易陷入"局部最优解"和搜索精度逐渐降低的缺点,提出了基于交叉和自适应权重的混合粒子群优化算法.加入的交叉操作使得种群在粒子数目不变的情况下多样性得以维持,而自适应权重有效地平衡了整个算法的全局与局部搜索能力.通过函数测试实验表明,新的算法能够避免早熟收敛问题,有效地提高了其寻优能力. 相似文献
9.
黎丹 《信息技术与信息化》2015,(1):76-79
根据粒子群和差分进化算法的特点相结合,提出了一种混合算法来解决配电网重构问题。并对粒子群和差分进化的混合算法原理作了详细的描述,根据电力系统的特点对配电网重构混合算法的具体步骤作了详细的描述。该算法以网络损耗最小为目标函数应用于IEEE16节点典型模型的配电网络重构中,仿真的结果表明,该混合算法在重构问题中的可行性和有效性。 相似文献
10.
基于最大熵和粒子群优化的红外图像分割 总被引:1,自引:0,他引:1
最大模糊熵是一种有效的图像分割方法,该方法的一个关键问题是确定模糊隶属度函数的最优参数组合,从而使得图像变换到模糊域后的模糊熵最大.但是直接采用穷举法来寻找最优参数组合的计算量是很大的,甚至是不可能的.因此,提出了采用一种新的优化方法,即粒子群算法来寻找最优参数组合.在参数搜索空间中,随机初始化一群粒子,通过粒子之间的相互协作来寻找最优解.所提出的方法用于分割红外图像的结果表明,花费很小的计算代价就可以获得理想的分割结果. 相似文献
11.
针对模糊C-均值(FCM)聚类算法易陷入局部极小值和对初始值敏感的缺点,本文提出了一种基于粒子群优化的模糊聚类算法.该算法利用粒子群强大的全局寻优能力,克服了模糊C-均值聚类算法的不足.实验结果表明,该算法具有很好的全局收敛性和较快的收敛速度. 相似文献
12.
13.
本文提出一种基于混合粒子群算法的QoS选播路由优化算法。算法针对QoS的多约束条件特点,采用了混沌搜索思想来增强算法局部搜索能力,并且通过正交初始化种群和交叉选择来增加粒子的多样性,提高算法精度。仿真结果对比表明,算法优化效果明显。 相似文献
14.
为了能够有效避免搜索过程陷入局部最优,从而增强全局搜索能力,提出一种基于模拟退火的粒子群算法.算法中引入遗传算法中常用的轮盘赌选择算子,能在早期抑制部分超级粒子对种群的控制,增加了群体的多样性.通过测试函数的比较表明,混合算法能很好地保持种群多样性,具有良好的计算精度和全局寻优能力. 相似文献
15.
基于QPSO的模糊C均值聚类算法 总被引:2,自引:3,他引:2
针对模糊C均值(FCM)聚类算法存在的缺点,利用量子粒子群优化(QPSO)算法的全局搜索能力,提出了一种新的聚类算法——基于量子粒子群优化的FCM聚类算法(QPSOFCM).QPSOFCM算法先对随机初始点利用QPSO进行优化,然后利用产生的中心点进行聚类,重复上述两步操作直至结果满意为止.新算法可以降低FCM算法对初始点的敏感度,一定程度上避免了FCM算法易陷入局部极优的缺陷.几组数据实验结果表明,与FCM和PSOFCM算法相比,提出的QPSOFCM算法聚类结果更可靠. 相似文献
16.
17.
针对粒子群优化算法(PSO)在加速度计标定中存在早熟及陷入局部最优的不足,提出了基于差分进化(DE)的双种群信息共享及并行进化的混合PSO算法,并将该算法应用于加速度计快速标定。为提高混合算法的优化性能,提出了一种平衡DE算法全局探索和局部开发能力的加权变异算子,将Logistic函数的非线性特性引入到PSO算法惯性权重和DE算法加权系数的动态调整中。基准测试函数仿真表明所提出的混合算法在收敛速度、收敛精度、全局搜索性能和鲁棒性等方面明显优于PSO、DE算法;加速度计标定仿真结果表明,提出的混合算法能有效提高加速度计的标定精度。 相似文献
18.
针对指派问题,提出了一种带有免疫功能的离散粒子群优化算法.在粒子群算法中通过交叉策略和局部搜索策略实现粒子位置的更新,以保证解的可行性.在迭代进程中为了防止粒子由于多样性降低陷入早熟收敛,通过基于信息熵的种群亲和度动态评价和抗体浓度抑制机制,很好地保持了种群的多样性,增强了算法的全局寻优能力.实算结果表明,该算法能到得较优的指派方案,且也能处理匈牙利法不能求解的指派问题. 相似文献