首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
借助数值模拟方法研究了不同气氛、氧浓度以及燃料热值对加热炉燃烧特性以及Nq排放的影响规律。结果表明:富氧燃烧能提高炉膛燃烧温度,使炉壁辐射换热量NJJtt约5.2%,排烟热损失减小约21.7%。相同富氧浓度条件下,空气气氛下炉膛燃烧温度更高,炉壁辐射换热量增加约5%,排烟损失减少24%以上;但OjCOz气氛下钢坯表面传热特性改善,断面温度分布更加均匀,Nq排放量降低为空气气氛的1/10以下。  相似文献   

2.
初始氧浓度对锅炉富氧燃烧和NOx排放的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
针对某电站300MW燃煤锅炉,基于专门开发的CFX-TASCFLOW软件平台,将额定负荷下空气气氛、不同初始氧浓度φ(O2=21%、30%、35%、40%)的O2/CO2气氛,共五种工况下的炉内流动、燃烧及污染物生成进行了数值模拟。计算结果表明:O2/CO2燃烧方式下,炉膛出口烟气中CO2的浓度均可达到90%以上,便于CO2的回收;随着初始氧浓度的增大,炉内的火焰温度提高,沿炉膛高度方向温度的降低幅度增高,炉膛出口烟气温度降低,NOx的生成量小于空气气氛;飞灰可燃物在初始氧浓度为21%时最高,在初始氧浓度增至30%~40%时,飞灰可燃物大幅度下降;30%的初始氧浓度是比较合理的富氧燃烧浓度。  相似文献   

3.
针对某75 t/h循环流化床锅炉炉膛出口NOx排放超标问题进行分析探讨,以合理的低氮燃烧控制技术为主,辅以SNCR烟气脱硝技术,争取达到NO x超净排放要求。采用CPFD计算方法对循环流化床锅炉炉膛内的气固流动和燃烧特性进行数值模拟,运用低过量空气燃烧法和空气分级技术对锅炉进行低氮燃烧控制,研究一、二次风配比、二次风射流、过量空气系数、循环倍率和颗粒粒径等因素对炉内燃烧及NO x排放的影响。结果表明:通过低氮燃烧控制后,炉内速度场和温度场分布均匀,炉膛出口处烟气流速增加,炉膛平均烟温和出口氧浓度降低,还原性气体CO浓度和优化前基本相同,炉膛出口NOx浓度降低,减排效果显著,为以后的锅炉运行提供实际指导经验。  相似文献   

4.
在1台70 MW循环流化床工业热水锅炉上,应用炉膛低氧燃烧加尾部烟道补燃技术,降低锅炉的NO_x原始排放浓度。通过降低炉膛内过量空气系数,使炉膛和旋风分离器内呈低氧燃烧状态。由于高温烟气中有残炭和CO的存在,抑制了NO_x生成,同时能够促进NO_x向N_2转化,从而降低了高温烟气中NO_x含量。从旋风分离器中心筒喷入补燃风,可将由于炉膛低氧而未完全燃烧的残炭和CO燃尽,保证了锅炉燃烧效率。采用炉膛低氧燃烧加尾部补燃技术,锅炉的NO_x原始排放浓度从393 mg/m~3降低至115 mg/m~3(@6%O_2),CO的排放浓度控制在4×10~(-6)。  相似文献   

5.
空气分级燃烧是一种降低NO_x排放的技术,文中在应用该技术的前提下,对不同过量空气系数下的燃烧工况进行了模拟研究。结果表明,随着过量空气系数的增大:1)烟气在炉内停留时间缩短,气流混合强烈,燃烧条件得到优化;2)炉膛火焰中心逐渐下降,主燃区温度不断升高,而炉膛出口烟温却呈下降趋势;3)主燃区CO浓度明显降低,还原性气氛得到减弱;4)炉膛出口NO_x浓度呈增大趋势。  相似文献   

6.
由于煤粉燃烧过程中煤灰的汽化、成核、凝结等物理化学过程是炉膛中亚微米颗粒形成的主要途径,借助CFD软件平台, 针对1台92.9kW卧式炉,对此进行了数值研究,计算得到了炉内的温度分布、氧浓度分布和亚微米颗粒数量浓度和质量浓度分布。计算结果显示,炉膛温度是亚微米颗粒生成的主要因素,相对于温度来说,氧浓度的影响不;分级燃烧通过降低炉膛温度可以实现降低亚微米颗粒排放的目的。计算结果对于从理论上分析亚微米颗粒的形成机理和影响因素具有积极意义。图10表2参12  相似文献   

7.
为了减少管式加热炉燃烧NOx的排放和提高加热炉的燃烧效率,实现加热炉的高效低氮燃烧,以某石化公司的F1001常压炉为研究对象,建立了常压炉物理模型,选用标准k-ε模型、非预混合湍流扩散燃烧PDF模型、P-1辐射模型、NOx生成模型对加热炉内的燃烧过程进行了数值模拟研究。研究结果表明:提高空气预热温度可以扩大炉内的高温区域,有利于炉管内原油的加热;燃烧NOx生成量和炉管出口油温随空气预热温度的升高而增大,当空气预热温度超过240℃时,NOx生成量急剧增大,所以空气预热温度以240℃为宜,此时NOx生成量为137 mg/m3,低于国家标准200 mg/m3。炉膛温度和出口油温测量值与模拟值进行了比较,二者吻合较好。研究结果为某企业常压炉的运行监控提供了参考依据。  相似文献   

8.
研究高炉煤气燃烧特性对于钢铁企业节能减排、降本增效具有十分重要的现实意义。基于数值模拟方法研究高炉煤气的燃烧特性,探讨空气过量系数、预热温度和富氧率等因素对燃烧温度及NOx浓度分布的影响规律,为改进高炉煤气燃烧技术提供理论依据。研究表明:空气过量系数增加使反应后平衡温度降低,燃烧温度峰值、反应平衡温度随空气预热温度及富氧率的增加而升高,NOx排放随三个因素的增加而增加,综合考虑,纯高炉煤气燃烧空气过量系数应取1.1,空气预热温度选700 K,富氧率控制在25%。  相似文献   

9.
以尺寸φ410 mm×1 930 mm实验炉膛为对象,采用数值模拟的方法研究了燃油燃烧器参数(射流速度、射流间距、再循环烟气量、炉膛热负荷等)对炉内燃烧特性以及湍流介观特性的影响,根据湍流燃烧无量纲准则数判定燃油MILD燃烧模式。研究结果表明:当烟气再循环率为20%,空气高速射流速度为150 m/s,且空气喷嘴所在的圆环直径为炉膛直径的0.5~0.65倍时,炉膛内可建立燃油MILD燃烧模式,其火焰锋面的湍流介观参数位于湍流分区图中的良搅拌反应器区域,即l/l_F1,Re_T1,Ka_δ1,Da1。燃油在MILD燃烧工况燃烧时,炉内温度峰值降低,氧浓度基本小于3%,炉膛出口NO_x排放浓度小于80 mg/m~3(标态)。  相似文献   

10.
尹洪超  张微 《节能》2007,26(9):4-6
空气预热是有效的节能技术,但预热温度的提高同时带来NOx排放浓度增加的问题。为了了解其规律,本文针对某烯烃厂芳烃加热炉的空气预热改造项目,对不同空气预热温度情况下的燃烧状况和NOx排放规律做了研究。首先利用数值模拟方法,构建了加热炉三维几何模型,将燃烧模型和NOx生成模型结合,对不同空气温度下的燃烧温度和NOx排放进行模拟,对炉膛内部温度分布及NOx排放规律做了研究,最后找出空气预热最佳温度。  相似文献   

11.
针对工业锅炉中气体燃料燃烧过程,采用数值模拟与实验相结合的方法,研究了C3H8燃料和常温空气通过平行圆管喷嘴类型的燃烧器在不同喷入条件下对炉膛内无焰燃烧的温度变化趋势和燃烧产物的影响.结果表明,在燃料和空气入口流量保持不变的情况下,空气喷嘴孔数或燃料喷嘴孔径增加将加剧炉内局部燃烧,导致燃烧峰值温度和出口NO浓度升高;随着燃烧器空气喷嘴与燃料喷嘴间距增加,炉内峰值温度和出口NO浓度下降;炉内峰值温度不超过1 900 K时,有利于实现低氮氧化物排放的常温空气无焰燃烧.  相似文献   

12.
射流间距对高温空气燃烧影响的数值研究   总被引:1,自引:0,他引:1  
以高温空气燃烧技术为应用背景,对多股射流燃烧器的燃烧特性进行了数值模拟,讨论了燃料与空气射流喷口间距对燃烧特性的影响.采用标准的k-ε双方程模型计算流场,采用β函数的PDF燃烧模型计算气体燃料的燃烧,采用离散坐标法模拟辐射换热过程.NOx模型为热力型NOx,炉膛尺寸为800mm×800mm×1400mm,燃料喷口为圆形,直径为10mm,位于中心.空气喷口设计为5个等面积的圆形置于燃气喷口周围.计算结果表明,由于射流之间的相互作用,在炉膛后面存在回流区.烟气的回流一方面加强了燃料和空气的混合,使温度分布更为均匀,同时改变了炉膛空间内的燃料和氧的浓度分布,从而影响燃烧强度和NOx的局部生成.当燃料射流喷口与空气射流喷口的间距增大时,能有效地延缓燃料和空气的混合,烟气回流将会增加燃烧室内气体的混合程度,降低燃烧室内局部氧浓度,有利于扩大低氧区域,扩大燃烧区域,并且使炉膛温度变得均匀,减少局部高温区,降低NOx的生成.I=2.5时的NOx排放浓度为45×10-6.  相似文献   

13.
空气预热温度是影响炉内煤气燃烧过程中氧化氮生成量的主要因素之一。在其他条件相同时 ,空气预热温度越高 ,燃烧产物的温度越高 ,从而使 NOX的生成量增加。文中以天然气为例进行了计算。在冶金炉中 ,由于燃烧产物在高温区停留的时间有限 ,因此 ,在大多数情况下 ,烟气中氧化氮浓度达不到化学平衡浓度。而当空气预热温度达 2 5 0~ 30 0℃时(此时燃烧温度将高于 195 0℃ ) ,燃烧产物中氧化氮浓度达到最大值 ,接近于化学平衡浓度。当预热温度再高时 ,氧化氮浓度的计算值与实测值相差较大 ,因为该浓度将取决于燃烧过程的组织和热交换条件。文…  相似文献   

14.
针对纯燃高碱煤旋风液态排渣锅炉局部高温以及NOx排放高等问题,通过ANSYS软件数值研究了不同深度空气分级方案对旋风液态排渣锅炉炉内温度场、组分场及NOx浓度分布的影响。研究结果表明:深度空气分级燃烧不同工况设置合理,形成了良好的富燃料的主燃区与富氧燃尽区,炉内燃烧稳定,旋风燃烧器逆向布置可促进煤粉燃尽,提高锅炉效率。不同深度空气分级工况下,炉内各组分分布特性一致。同时确定了主燃区最佳过量空气系数为0.85,燃尽风量选用逐层降低布置可实现最佳低氮排放,炉膛出口烟温最低为1 375.45 K,炉膛出口NOx浓度最低为391.14 mg/m3。  相似文献   

15.
介绍了常温无焰燃烧技术在燃气锅炉上的应用,建立了炉膛内流动与传热的数学模型并进行了数值计算,给出了温度场和NOx浓度场分布。发现增大过量空气系数可以降低炉膛最高温度及平均温度,减小生成的NOx浓度。当过量空气系数为1.05时,锅炉热效率达到最高值,超过98%。当锅炉热负荷低于20%时,炉膛内燃烧方式接近传统有焰燃烧;当锅炉热负荷高于20%时,炉膛内燃烧方式为无焰燃烧,炉膛内温度分布均匀,NOx生成量极低,排放稳定。  相似文献   

16.
燃尽风喷口位置对NOx排放的影响   总被引:2,自引:2,他引:0  
针对一台采用旋流式燃烧器的煤粉炉NOx排放质量浓度较高的问题,采用空气分级燃烧方式以降低NOx排放量,基于CFD软件平台,在额定负荷下,分别对3种不同燃尽风喷口位置的改造方案进行了炉内燃烧及污染物生成的数值模拟,并通过综合比较炉内各参数的变化确定了最佳燃尽风喷口位置.结果表明:燃尽风喷口位置的上移降低了主燃区氧气的体积分数,同时使炉膛内的最高温度降低了23~29K.燃尽风喷口位置对NO,的还原效果、出口烟气温度以及煤粉焦炭转化率的影响较大.当燃尽风喷口位置升高时,NOx质量浓度降低,炉膛出口烟气温度升高,煤粉焦炭转化率下降.经综合比较炉膛出口烟气温度、NOx质量浓度以及煤粉焦炭转化率得出,距最上层燃烧器7.7m处为最佳燃尽风喷口位置.  相似文献   

17.
利用商业软件FLUENT,在3种氧气浓度燃烧状态下对燃煤锅炉进行了数值模拟,研究了不同氧浓度下火焰形状及炉膛传热特性的变化规律。研究表明,氧气体积浓度为33%时,炉膛的温度分布更加平均,并且火焰传递给炉墙的热量与空气燃烧时最为接近,因此,当氧气体积浓度为33%时,对现有锅炉受热面的改造最小。此外,为了平衡锅炉的热负荷,使其适应富氧燃烧,可将流经省煤器之后的给水温度适当降低或者将部分过热器移到炉膛辐射区来代替部分水冷壁。  相似文献   

18.
在1 000MW机组锅炉上进行了燃烧调整试验,通过改变过量空气系数、机组负荷、燃尽风率和配风方式,对烟气NO_x的排放规律进行了研究。结果表明:随着过量空气系数的增大,NO_x排放浓度显著增大,锅炉排烟热损失呈上升趋势,飞灰含碳量呈下降趋势。锅炉负荷对NO_x排放的影响主要来自燃料量、炉膛温度、氧浓度等多方面因素的综合影响,随着锅炉负荷下降,过量空气系数增大,烟气NO_x排放浓度呈缓慢下降趋势,单位质量燃料的NO_x转化率有所升高。增大炉膛的燃尽风率可显著降低烟气NO_x排放浓度。在燃尽风率较低的燃烧工况下,NO_x排放浓度对燃尽风率的变化尤为敏感。与均等配风方式相比,束腰配风方式可降低炉膛主燃料区的氧浓度,使烟气NO_x排放浓度下降。  相似文献   

19.
锅炉燃烧调整对NOx排放和锅炉效率影响的试验研究   总被引:7,自引:0,他引:7  
在2台典型的1025 t/h锅炉上进行了燃烧调整降低NOx排放浓度的试验研究,通过改变过量空气系数、辅助风配风方式、运行负荷和制粉系统运行方式等,测定了锅炉尾部烟道NOx排放浓度,分析了锅炉运行工况、运行方式对NOx排放的影响.结果表明:降低过量空气系数,烟煤锅炉NOx减排效果比贫煤锅炉好得多;降低负荷,烟煤锅炉的NOx排放量降低值较大;缩腰式配风的NOx排放浓度比均匀配风方式约降低10%,制粉系统的运行方式影响炉内燃料的燃烧状态和温度分布,也影响NOx的生成和排放.在不降低锅炉效率的前提下,调整燃烧工况,可降低锅炉排放NOx浓度1O%~20%.  相似文献   

20.
在炉膛尺寸为150 mm×150 mm×2 500 mm的循环流化床燃烧试验台上进行糠醛渣与煤的混燃试验,研究其燃烧特性、尾部飞灰及烟气排放特性。研究表明:糠醛渣掺混质量比例为10%-50%的混合燃料在循环流化床中均可稳定燃烧;随着糠醛渣的掺混比例增加,炉膛上部温度升高,尾部飞灰含碳量下降,而颗粒排放浓度升高;随着流化风速增加,炉膛上部温度升高。密相区的温度升高,CO排放浓度下降,SO2、NOx排放浓度上升;糠醛渣的掺混比例增加,CO排放浓度上升,SO2、NOx排放浓度下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号