共查询到19条相似文献,搜索用时 46 毫秒
1.
针对网络流量异常检测过程中提取的流量特征准确性低、鲁棒性差导致流量攻击检测率低、误报率高等问题,该文结合堆叠降噪自编码器(SDA)和softmax,提出一种基于深度特征学习的网络流量异常检测方法。首先基于粒子群优化算法设计SDA结构两阶段寻优算法:根据流量检测准确率依次对隐藏层层数及每层节点数进行寻优,确定搜索空间中的最优SDA结构,从而提高SDA提取特征的准确性。然后采用小批量梯度下降算法对优化的SDA进行训练,通过最小化含噪数据重构向量与原始输入向量间的差异,提取具有较强鲁棒性的流量特征。最后基于提取的流量特征对softmax进行训练构建异常检测分类器,从而实现对流量攻击的高性能检测。实验结果表明:该文所提方法可根据实验数据及其分类任务动态调整SDA结构,提取的流量特征具有更高的准确性和鲁棒性,流量攻击检测率高、误报率低。 相似文献
2.
针对异常检测系统检测率低,特征提取困难等问题,提出了一种基于深度特征学习的异常检测方法。该方法通过构建具有多隐层的深度神经网络模型,学习数据的特征表达,充分刻画数据的丰富内在信息,从而提高异常检测的准确率。文章实验结果表明,采用该方法可以有效地学习到数据的本质特征,并显著提高异常检测方法的检测率。 相似文献
3.
为了解决电磁频谱异常检测精度不高的问题,在深度卷积神经对抗网络(Deep Convolution Generative Adversarial Network, DCGAN)的基础上加入了编码器(Encoder)用来重构频谱数据。编码器首先将真实频谱数据编码为低维特征表示,生成器通过学习编码后的低维特征生成重构频谱数据,判别器负责将重构频谱数据与真实频谱数据进行区分,并通过对抗性训练逐渐提高模型重构频谱数据的能力,最后计算重构频谱数据与真实频谱数据的均方误差,判别异常。实验结果表明,该模型能够在多个频段下实现有效的电磁频谱异常检测,在TV频段下,干信比为-5 dB时,相比于现有电磁频谱异常检测方法,所提方法的平均检测性能提升了18%以上。 相似文献
4.
建立完善的交通事件检测系统,已经成为我国智能交通系统的重要组成部分。文章从数据和算法2个方面深入分析了交通事件检测场景特征,设计了一种基于深度学习的交通事件检测系统。文章提出了一种混合架构的联合学习网络,通过综合利用ViT和Swin Transformer的优势解决了图像多标签分类问题的挑战;设计了一系列数据增强方法,应对数据不平衡性对深度学习模型的影响,并有效缓解了模型过拟合问题。实验结果表明,该系统在交通事件检测中具有更好的准确性和泛化能力,已应用到多个实际项目并取得了良好的应用效果。 相似文献
5.
视频中的异常检测是一个具有挑战性的计算机视觉问题。现有的最先进视频异常检测方法主要集中在深度神经网络的结构设计上,以获得性能改进。与主要研究趋势不同,本文侧重于将集成学习和深度神经网络相结合,提出了一种基于集成生成对抗网络(Generative Adversarial Networks,GAN)的方法。在所提出的方法中,一组生成器和一组判别器一起训练,因此每个生成器可以从多个判别器获得反馈,反之亦然。与单个GAN相比,集成GAN可以更好地对正常数据的分布进行建模,从而更好地检测异常。在两个公开数据集上测试了所提出的方法性能。结果表明,集成学习显著提高了单个检测模型的性能,在两个数据集上比现有最近方法分别超过0.4%和0.3%的帧级AUC。 相似文献
6.
显著区域检测可应用在对象识别、图像分割、视 频/图像压缩中,是计算机视觉领域的重要研究主题。然而,基于不 同视觉显著特征的显著区域检测法常常不能准确地探测出显著对象且计算费时。近来,卷积 神经网络模型在图像分析和处理 领域取得了极大成功。为提高图像显著区域检测性能,本文提出了一种基于监督式生成对抗 网络的图像显著性检测方法。它 利用深度卷积神经网络构建监督式生成对抗网络,经生成器网络与鉴别器网络的不断相互对 抗训练,使卷积网络准确学习到 图像显著区域的特征,进而使生成器输出精确的显著对象分布图。同时,本文将网络自身误 差和生成器输出与真值图间的 L1距离相结合,来定义监督式生成对抗网络的损失函数,提升了显著区域检测精度。在MSRA 10K与ECSSD数据库上的实 验结果表明,本文方法 分别获得了94.19%与96.24%的准确率和93.99%与90.13%的召回率,F -Measure值也高达94.15%与94.76%,优于先 前常用的显著性检测模型。 相似文献
7.
针对深度神经网络用于入侵检测方法时存在训练过程中由于数据不平衡和特征冗余两大问题而导致的低检测率和高误报率,提出一种基于二次决策的深度学习模型(TDDL).该模型由深度堆栈自动编码器(DSAE)和神经网络结合,包括二个阶段特征学习,其中第一阶段使用DSAE对特征压缩并加入区分异常数据的概率值特征,第二阶段使用神经网络(NN)接收第一阶段的特征并训练,从而降低特征冗余和平衡对正常数据的偏向,以提高检测效果.经KDDCUP99数据集进行实验测试,仿真实验结果表明,该模型能有效提升深度神经网络在入侵检测数据上特征学习的效果,使其具有更高的准确率的同时,还具有较低的误报率. 相似文献
8.
文中提出了一种基于卷积变分自编码器和生成对抗网络的网络入侵检测方法(CVAE-GANs),旨在实现针对多模态数据的网络入侵检测。该方法通过将不同模态的数据编码为共享潜在空间表示,并使用生成器和判别器实现多模态数据的生成和检测。最后,使用DARPA数据集进行了实验,评估了该方法在多模态数据上的性能。结果表明,相较于标准GANs方法,CVAE-GANs方法在准确性和鲁棒性方面,具有显著的优势。 相似文献
9.
针对传统半监督深度异常检测模型对非平衡多维数据分布学习能力不足及模型训练困难等问题,提出一种基于VAE-WGAN架构的多维时间序列异常检测方法,利用VAE作为WGAN的生成器,使用Wasserstein距离作为模型拟合分布与待测数据真实分布之间的度量,学习复杂的高维数据分布.利用滑动窗口划分时间序列,使用正常序列数据训... 相似文献
10.
为了满足对大规模视频数据的异常行为检测的需求,基于视频帧重建和帧预测的方法被广泛研究.但由于监控视角下背景环境是几乎不变的,因此会浪费大量的资源在不变的背景上,同时也不利于检测目标信息的提取.为了解决这个问题,本文使用无监督学习的视频帧预测策略,利用生成对抗网络学习正常行为的特征以生成效果较好的预测帧,并且拟采用注意力驱动损失来缓解异常行为检测中前景目标与背景环境失衡的问题,同时使用空间-通道注意力机制(CBAM)来增强模型生成器的预测效果.经在公共数据集UCSD Ped1和UCSD Ped2的测试和验证,在Ped1数据集上的检测精度达到了83.5%,在Ped2数据集上的检测精度达到了95.8%.与经典的异常行为检测算法以及原始基于生成式对抗网络异常检测算法比较,本文所采用的方法进一步提高了异常行为检测的准确率. 相似文献
11.
针对5G电力虚拟专网中高维、不均衡和分布式的数据特征,提出了一种基于联邦对抗学习的分布式异常检测算法。首先,鉴于生成对抗网络在获取高维复杂数据分布方面的优势,采用具有梯度惩罚的Wasserstien生成对抗网络(WGAN-GP)模型对网元中的多维运行数据进行分析和监控并获取其分布情况。其次,基于5G电力虚拟专网的管理架构,设计了一种基于联邦对抗学习的分布式异常检测框架,使分布式电力切片管理器能够协同训练全局异常检测模型,增强模型泛化能力。最后,通过数值仿真验证了基于联邦对抗学习的分布式异常检测算法的训练效率和检测性能。 相似文献
12.
焊点的焊接质量决定了电路板的可靠性,而电路板焊接异常的快速检测是大批量生产的先决条件。为了快速地实现焊接异常的精确检测,提出了一种基于深度学习的焊点图像识别算法。该算法通过自适应矩估计配合加速卷积神经网络实现,可对大量焊接图片进行快速分类识别检测。实验选取5 000幅焊接图像训练集测试,并与传统的K-means聚类算法和Canny边缘检测算法对比。实验结果显示,在小球和连桥缺陷中3种方法效果相近,而在虚焊、少锡缺陷中,本算法具有明显优势。在1 000组测试集实验中,其综合检出率及召回率分别达97.92%和98.21%,明显优于传统方法,验证了本算法具有更好的应用前景。 相似文献
13.
在采用无线通信接入的配电网中,入侵检测系统(IDS)通过分析通信网中传输数据来判断入侵事件.为提高检测的准确性,本文将深度学习理论应用于IDS,提出了一种面向配电网无线通信网络新型入侵检测系统,由带有门控循环单元、多层感知器和Softmax的循环神经网络组成.攻击测试基准实验结果表明IDS防御的有效性,在KDD99测试数据集上,其误报率为0.06%,总检出率为96.43%;在NSL-KDD测试数据集上,其误报率低至0.86%,总检出率则为99.33%. 相似文献
14.
边缘计算场景下,边缘设备时刻产生海量蜂窝流量数据,在异常检测任务中针对直接对原始数据检测异常存在的计算冗余问题,提出基于特征降维的蜂窝流量数据异常检测方法.该方法在全局范围内利用LSTM自编码器提取流量数据特征和标识异常网格,然后在存在可疑异常的网格使用K?means聚类进行局部异常确认,结果表明可以更好地检测出不同活... 相似文献
15.
针对协同表示的高光谱异常目标检测算法的异常点敏感问题,提出了一种基于背景纯化的改进协同表示的高光谱异常目标检测算法。利用扩展数学形态学的膨胀操作消除局部背景模型中可能存在的异常点,从而得到更为纯净的背景字典,能够有效地消除检测过程中异常点对检测效果的负面影响,从而提高检测精度。采用该算法对高光谱数据进行仿真实验,并与现有算法进行对比,结果表明该算法具有更好的检测效果。 相似文献
16.
基于深度神经网络的多源图像内容自动分析与目标识别方法近年来不断取得新的突破,并逐步在智能安防、医疗影像辅助诊断和自动驾驶等多个领域得到广泛部署。然而深度神经网络的对抗脆弱性给其在安全敏感领域的部署带来巨大安全隐患。对抗鲁棒性的有效提升方法是采用最大化网络损失的对抗样本重训练深度网络,但是现有的对抗训练过程生成对抗样本时需要类别标记信息,并且会大大降低无攻击数据集上的泛化性能。本文提出一种基于自监督对比学习的深度神经网络对抗鲁棒性提升方法,充分利用大量存在的无标记数据改善模型在对抗场景中的预测稳定性和泛化性。采用孪生网络架构,最大化训练样本与其无监督对抗样本间的多隐层表征相似性,增强模型的内在鲁棒性。本文所提方法可以用于预训练模型的鲁棒性提升,也可以与对抗训练相结合最大化模型的“预训练+微调”鲁棒性,在遥感图像场景分类数据集上的实验结果证明了所提方法的有效性和灵活性。 相似文献
17.
Security devices produce huge number of logs which are far beyond the processing speed of human beings. This paper introduces an unsupervised approach to detecting anomalous behavior in large scale security logs. We propose a novel feature extracting mechanism and could precisely characterize the features of malicious behaviors. We design a LSTM-based anomaly detection approach and could successfully identify attacks on two widely-used datasets. Our approach outperforms three popular anomaly detection algorithms, one-class SVM, GMM and Principal Components Analysis, in terms of accuracy and efficiency. 相似文献
18.
针对哈萨克语的句子、单词及语素边界检测问题,文中提出了一种基于深度学习的边界检测方法:CNN-TSS模型。通过将边界检测问题视为序列标注任务,将句子、单词及语素的边界检测合并为一种任务完成。通过对CNN-TSS模型选取最优超参数,对不同语言进行了测试。实验结果表明,该模型在不使用额外特征的情况下,在性能上超过了基于传统方法的边界检测系统。 相似文献
19.
介绍深度学习算法可靠性面临的安全隐患及对抗性样本对可靠性的影响;分析深度学习算法可靠性评估现状:目前业界缺乏对深度学习算法可靠性的系统性评估方法,一定程度上影响着深度学习的广泛应用和技术发展;依据团体标准《人工智能深度学习算法评估规范》(T/CESA 1026-2018)对深度学习算法可靠性评估进行探讨;采用白盒、黑盒实验方式研究对抗性样本对深度学习算法可靠性的影响,并将逐步在深度学习算法的测试评估中推广。 相似文献
|