共查询到20条相似文献,搜索用时 46 毫秒
1.
基于离散滑模观测器的锂电池荷电状态估计 总被引:2,自引:0,他引:2
锂电池的荷电状态(state of charge,SOC)估计是电池管理系统的重要组成部分,针对锂电池非线性的特性,提出了采用离散滑模观测器估计锂电池荷电状态的方法,给出了离散滑模观测器的设计方法及其稳定性证明。基于锂电池的戴维南等效电路模型,给出了该方法的设计过程,在不同的充放电电流倍率和环境温度下,进行了锂电池模型的参数辨识,通过与常用的扩展卡尔曼滤波法相比较,分析了离散滑模观测器对锂电池SOC估计的精度、鲁棒性和算法复杂度等方面的性能。实验结果表明,采用该算法可实现锂电池SOC快速精确地估计,误差可控制在约3%,验证了该方法的可行性。 相似文献
2.
对锂离子电池荷电状态(SOC)进行准确估算是保证电池管理系统安全稳定运行的关键。常用的安时积分法存在累积误差,卡尔曼滤波算法需要建立精确的电池模型,神经网络法不依赖具体的锂电池模型,能够反映锂电池的非线性关系,因而受到广泛关注,然而传统神经网络估算SOC训练时间长、精度低。针对以往电池SOC估算精度低等问题,文中提出粒子群(PSO)优化极限学习机(ELM)神经网络的方法。以电池电压、电流和温度作为PSO-ELM模型的输入向量,以SOC作为输出向量。将实验获得的数据导入模型进行训练和测试,采用PSO对ELM随机给定的输入权值和隐含层阈值进行寻优。仿真结果表明,与BP神经网络的预测结果相比,文中估算SOC的方法具有更高的精度。 相似文献
3.
提出了一种新的电池荷电状态(SOC)的估计方法。电池的开路电压(OCV)与SOC之间是一种分段线性的关系,为了避开这类非线性问题,观测器设计时的通行做法是将输出电压的方程式对时间进行求导。文中分析表明这种对电压方程求导的做法是不正确的。指出可以将分段线性关系看做是广义系统中的一种线性约束,从而提出用广义系统观点来处理电池的这个分段线性约束,并且设计了广义系统观测器。仿真结果表明所提出的观测器的有效性。 相似文献
4.
5.
7.
估算算法先进性与否是影响锂离子电池荷电状态(SOC)估算准确度的重要因素。用扩展卡尔曼滤波(EKF)算法估算锂离子电池SOC时在低容量区和估算后期误差较大,为此将EKF算法和安时积分法(AH)相结合,提出EKF-AH联合算法。选用恒流放电及动态工况对联合算法进行实验验证。结果表明,在两个实验工况下对SOC的估算误差分别小于2%和3%。因此EKF-AH相比于EKF,估算精度提高。 相似文献
8.
9.
10.
优化电池模型的自适应Sigma卡尔曼荷电状态估算 总被引:1,自引:0,他引:1
采用数学模型法对磷酸铁锂电池进行非线性建模,优化了状态模型及观测模型。模型考虑了充放电倍率、温度、老化循环寿命等因素,对电池松弛效应及极化现象影响进行建模补偿,提高了电池建模的准确度,降低了不同条件下因电池模型造成电池荷电状态(SOC)估算的误差影响。在电池模型参数辨识基础上,提出采样自适应Sigma卡尔曼算法构建SOC估算模型,按照非线性模型对状态变量的分布构建Sigma采样序列,采用模型输出残差更新噪声协方差,赋予Sigma采样序列最优估计及噪声的权值,并实现误差量的实时更新,降低计算复杂度。通过持续大电流、间断电流、变电流放电及充电实验条件下的SOC估算对比实验,验证了自适应Sigma卡尔曼算法快速收敛性,数学描述更准确,具备较高的SOC的观测准确度。 相似文献
11.
12.
13.
14.
基于EKF的锂电池SOC估算与试验研究 总被引:1,自引:0,他引:1
《电源技术》2015,(12)
锂离子电池以其无泄漏、无污染、无噪声等优点,近年来广泛应用于工业及生活领域。目前常用的基于扩展卡尔曼滤波(EKF)的锂电池SOC(荷电状态)估计方法由于建模不准确而导致估计结果误差较大,严重影响到电池管理系统的性能及整机系统的控制。针对该问题,采用精度较高的Randles模型,并在拟合电池的OCV(开路电压)-SOC曲线时通过引入自然指数函数并增加多项式阶数等方法提高拟合精度。使用EKF对锂电池SOC进行估计,与理论结果相比模型改进后估计误差的标准差比改进前下降了64.43%。试验结果表明通过改进电池模型大大提高了基于EKF方法的锂电池SOC估计精度,对于提高电池管理系统以及整机系统性能具有重要意义。 相似文献
15.
16.
在实际工况中,电池测量参数易受相关性较强的有色噪声干扰。仅考虑有色观测噪声满足一阶自回归模型,提出一种带有色观测噪声的自适应无迹卡尔曼滤波算法(CM-AUKF)。算法对荷电状态(SOC)估计的平均绝对误差为0.000 4,均方根误差为0.000 3,估计精度和稳定性较高,可克服对系统噪声方差初值敏感的问题,提高SOC估计的自适应能力。 相似文献
17.
作为动力锂电池的核心参数,锂电池的荷电状态(SOC)的精度估算决定了储能系统控制的精度和管理的可靠性,目前业内对于SOC估计算法的研究不够深入,导致精度低,计算量大,并且依赖于初始值精度,工程应用难度大,以至于动力锂电池管理系统的精确控制和管理难以实现。对电池等效电路PNGV模型进行改进,提高了模型精度,并结合拓展卡尔曼滤波算法(EKF)实现了高精度的SOC估计,通过电池实测和仿真验证,该算法提高了SOC估算精度,解决了SOC估计依赖初值精度问题,具有较高的工程应用价值。 相似文献
18.
19.