首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 183 毫秒
1.
为研究斜交桥墩在多沙河流上的局部冲刷问题,利用1∶100正态模型水槽对不同斜交角度长方体圆墩进行了系列试验,对桥墩在不同水流强度、斜交角度条件下的冲刷坑形态进行了系统观测和分析。结果表明:斜交桥墩冲刷坑的几何特性与正交桥墩存在较大区别,当单宽流量为10 m3/(s·m)、斜交角度为15°以上时,桥墩会出现共轭冲刷坑;当桥墩斜交时,背水侧会出现顺时针旋涡水流下降区,迎水侧墩尾处受水流顶冲出现局部冲刷坑;桥墩局部冲坑深度、体积、范围等要素均随水流强度及斜交角度的增大而增大,墩尾冲刷坑深度约为墩前的0.7倍,桥墩冲刷坑面积与桥墩投影面积比的最大值为32.4;水流强度较小时规范公式计算值与试验值较吻合,水流强度较大时规范公式计算冲深小于试验值,二者比值为0.66~0.92。  相似文献   

2.
基于桥墩局部冲刷原理,在水平护圈防冲措施的基础上,设计了一种能改变桥墩周围水流流态的新型防冲设施—钩环式护圈。为探究钩环式护圈对圆柱形桥墩局部冲刷的防护效果,采用不同形状的钩环式护圈进行室内物理模型试验,分析了桥墩周围的冲刷特征和水力特性。试验结果表明:当钩环式护圈的高度为1 cm、角度为135°且安装在床面时,防护效果最好;与光墩相比,桥墩安装钩环式护圈后,最大冲刷深度最多可减小62.2%,桥墩底部垂向流速、垂向紊动强度均明显减小。通过多元回归分析建立了计算桥墩周围无量纲最大冲刷深度的经验方程,该方程对明流和冰盖条件下水流均适用。  相似文献   

3.
水流通过桥墩在桥墩区域形成复杂的三维流场,会对桥墩底部冲刷和桥区通航产生很大的影响,所以控制桥墩紊流区水流形态十分重要。采用RNGκ-ε紊流模型对桥墩绕流进行三维数值模拟,在墩尾设置不同长度导流板,计算分析墩周围的水流紊动强度值。设置导流板后,墩周围X/D=0~5.3断面的水流最大紊动强度值明显减小,而墩后的紊动强度普遍有减小趋势,且长度不同的导流板对同一墩型的绕流控制作用不同。合适长度的导流板能束窄紊动强度变化值σ0.1的范围,即能减小紊流宽度。  相似文献   

4.
圆柱桥墩局部冲刷机理试验研究   总被引:4,自引:0,他引:4       下载免费PDF全文
为进一步探索圆柱桥墩局部冲刷机理,分别从桥墩附近水流流速分布特性、桥墩冲刷特性以及冲刷与流速相互关系对圆柱桥墩顺水流向不同布置方式的局部冲刷水力学特征进行了模型试验研究.结果表明:两排10桥墩顺水流(桥墩轴向与水流方向夹角分别为90°,60°,30°,0°)均匀布置时,桥墩轴向与流向夹角越小,流速在桥墩上下游紊动越小,对下游影响范围越大,且流速越大,冲刷深度和范围越大.顺水流布置0°夹角时,冲刷程度最小,在相同流量下,冲刷稳定历时最短;垂直布置(90°夹角)时,冲刷程度最严重,所需冲刷稳定历时最长,且随着流量的增大,桥墩墩前冲刷坑最深位置逐渐向水槽中间偏移.  相似文献   

5.
为了保证郑焦铁路黄河大桥桥梁基础安全,同时尽量避免桥梁基础因设计偏于安全而造成工程投资的增加,按单宽流量、河势以及桥墩防护的多种组合,开展了桥墩基础局部冲刷试验研究,分析了桥墩局部冲刷的水流现象、冲刷坑形态和冲刷深度。结果表明:局部冲刷最深点在承台下的桩群之间,略偏向桥轴线上游部位;墩后形成带状淤积体,淤积体随单宽流量的增大而增大。水流方向与桥轴线正交时,桥墩周围的局部冲刷坑形态基本沿桥墩轴线对称分布;水流方向与桥轴线法线存在夹角时,冲坑范围扩大、冲坑深度明显增深,桥墩两侧马蹄形旋涡不再对称分布。墩前抛石护底后,局部冲刷坑深度明显变浅。  相似文献   

6.
精确模拟山区河流非均匀沙质河床桥墩的局部冲刷对桥梁设计和安全运行具有重要的意义。以黑石渡大桥河床床沙特征为背景,采用Flow3D软件开展非均匀沙质河床上双排圆柱形桥墩冲刷三维数值模拟研究。为考虑河床非均匀泥沙的悬移质运动、泥沙挟带、推移质输运等过程,在数值模拟过程中,根据非均匀沙质河床的颗粒分布曲线,对所筛取的各个级配范围内的颗粒采用其对应的中值粒径来表征。模拟得到了双柱排桥墩局部流场结构、河床的冲淤变化和上下游桥墩周围冲刷坑形态。研究表明:受桥墩阻水作用影响,墩前壅水、墩后跌水现象明显。墩周冲刷坑基本贯通整个墩周区域,受上游墩保护作用影响,下游墩冲刷坑的发育深度和规模小于上游墩。将数值模拟结果与试验结果进行了对比分析,二者吻合较好。研究成果可为深入开展非均匀沙质河床桥墩局部冲刷研究提供参考。  相似文献   

7.
《人民黄河》2017,(7):55-60
为研究复杂结构桩基在多沙河流上的局部冲刷问题,利用1∶100正态模型水槽对主河槽中输电塔基的冲刷情况进行了试验,对塔基不同埋深、不同洪水频率条件下的冲刷坑形态进行了观测和分析。结果表明:塔基周围水流流态及流速分布与单桥墩类似,但桩群内部水流流态及流速分布则相对复杂;试验前后塔基前水深、流速的比值分别为0.47~0.64、1.25~1.26;塔基冲刷深度与水流单宽流量成正比,与承台埋深成反比,下游塔基的冲刷深度略小于上游塔基的。  相似文献   

8.
由于传统桥墩冲刷防护措施的局限性,引入新型防冲装置-环翼式防冲板,对圆端形桥墩冲刷进行防护,通过减小下降水流改变桥墩周围水流结构,主动降低了下降水流对桥墩的冲刷。为探究环翼式防冲板对圆端形桥墩局部冲刷的防护作用,采用3种比例圆端形桥墩、3种环翼式防冲板安装位置进行物理模型试验,对圆端形桥墩周围的冲坑特征、垂向流速、垂向紊动强度、紊动切应力等水力要素进行研究。结果表明:安装环翼式防冲板后,3种圆端形桥墩冲刷程度均减小,中圆端形桥墩冲刷减小幅度最大,冲坑体积减小率为30.0%;中圆端形桥墩安装环翼式防冲板后,墩前垂向流速减小为0.039m/s、垂向紊动强度减小为0.025m/s;防冲板上垂面紊动切应力增大,板下垂面紊动切应力减小。试验结果表明环翼式防冲板能够减小桥墩的局部冲刷,具有很高的实用价值。  相似文献   

9.
大桥复合桥墩局部冲刷深度的计算分析   总被引:2,自引:1,他引:1  
桥墩的冲刷毁坏是桥梁失事的重要原因。为保证桥梁安全,需要准确评价桥墩冲刷深度。本文结合某跨海大桥,使用较为可靠的HEC-18公式对其复合桥墩的局部冲刷深度进行研究。计算结果表明,该大桥最大的可能局部冲刷深度发生在主桥主墩,复合桥墩中群桩部分造成的冲刷深度为桥墩冲刷的主要部分,且随流速增大,其在总冲刷深度中所占比例也增大,总冲刷深度对承台吃水深度变化不敏感。进一步分析表明,复合桥墩的冲刷深度随水流斜交角的变化规律与简单桥墩有较明显区别,关系更为复杂。  相似文献   

10.
在我国近海海域,跨海桥梁基础冲刷是影响大桥安全的重要因素之一。基于金塘大桥2014、2015和2017年桥墩基础冲刷实测资料,并结合建桥前地形测验资料进行了案例分析,解析出了往复潮流条件下桥墩基础的一般冲刷及局部冲刷深度,金塘大桥中引桥桥墩一般冲刷深度为3.3~3.6 m,平均局部冲刷深度约8.3 m。往复潮流条件下桥墩基础局部冲刷坑受双向潮流影响向上下游延伸,形状呈椭圆形,各墩冲刷坑纵向长度与最大局部冲刷深度呈近似线性关系,长度约为局部冲刷深度的10~12倍,而各墩冲刷坑横向宽度则基本一致,约为桥墩基础宽度的4~5倍,与最大局部冲刷深度无明显相关性。跨海桥梁基础冲刷深度计算方法及冲刷坑形态特征的研究成果可供跨海大桥基础设计、运行维护及基础冲刷防护参考。  相似文献   

11.
Experiments of the local scour around twin piers are carried out under steady clear-water conditions, including 95 tests to observe the influence of the pier spacing and the flow velocity on the local scour characteristics of the twin piers. It is shown that the start of the transition region is synchronous with the sediment transport from the upstream scour hole to the downstream one. The equations for the critical velocities are derived to quantify the velocity range of each of four different scour regions. Finally, a prediction formula of the downstream pier scour depth in the radical-deviation region is established.  相似文献   

12.
杭州湾跨海大桥海中平台位于杭州湾大桥中间位置,海中平台下部群桩结构与平台上游各系列匝道墩、大桥主墩形成了复杂的墩群结构,受其影响,海中平台区域海床冲刷较为剧烈。为深入了解海中平台区海床冲刷特性,应用多年实测地形测量资料,对海中平台区的海床地形特征、建桥前后海床冲淤变化规律进行了分析,研究各匝道墩最低冲刷高程分布,并应用数值计算模型分析了海中平台区的水动力分布特征,揭示了匝道墩海床冲刷机理。研究发现,与建桥前相比,海中平台区大桥轴线上游500 m~下游1 000 m范围内海床发生整体一般冲刷,在海中平台南北两侧,受局部绕流影响,产生明显的局部冲刷,最大冲刷达14 m。平台南北两侧向上游延伸的局部冲刷槽影响到平台上游的匝道墩,导致部分匝道墩附近海床高程普遍较低。整体来看,位于桥轴线上游的ZB和ZC系列匝道墩因受到海中平台绕流及主墩绕流的叠加影响,导致其最低海床高程明显低于位于桥轴线下游的ZD和ZE系列匝道墩,各匝道墩最低海床高程与涨潮流流速大小具有一定的相关性。  相似文献   

13.
冬季寒冷的北方河流易形成冰盖或冰塞,冰盖的存在对桥墩附近局部冲刷产生影响.在清水冲刷条件下,试验研究了有无冰盖条件下,不同流速和水深对桥墩附近局部冲刷的影响.研究结果表明:对比明流条件,冰盖的存在导致更大的近底流速和近底流速梯度,从而桥墩局部最大冲刷深度更大;其它条件相同的情况下,随流速的增大,桥墩局部最大冲刷深度增大...  相似文献   

14.
王军  李志颀  程铁杰  隋觉义 《水利学报》2021,52(10):1174-1182
在寒冷地区,河道中冰盖的存在会改变河道流速分布。与明流条件相比,冰盖条件下水流最大流速点会向河床移动,加剧桥墩周围的局部冲刷。过度的局部冲刷会导致桥梁倒塌。基于水槽清水冲刷试验,对冰盖与明流条件下圆柱型桥墩局部冲刷随时间的变化进行了研究,试验结果表明:冰盖下桥墩局部冲刷速率大于明流。平衡冲刷深度比明流条件下的约大12%,且冲刷平衡所需时间比明流条件下的要约大10%。分析了水流强度与无量纲冲刷深度的关系以及冰盖与明流条件下冲刷深度变化速率的差异,给出了冰盖下局部冲刷深度随时间变化的经验方程,研究成果可供实际工程参考。  相似文献   

15.
Local scour around bridge piers and abutments is one of the most significant causes of bridge failure. Despite a plethora of studies on scour around individual bridge piers or abutments, few studies have focused on the joint impact of a pier and an abutment in proximity to one another on scour. This study conducted laboratory experiments and flow analyses to examine the interaction of piers and abutments and their effect on clear-water scour. The experiments were conducted in a rectangular laboratory flume. They included 18 main tests (with a combination of different types of piers and abutments) and five control tests (with individual piers or abutments). Three pier types (a rectangular pier with a rounded edge, a group of three cylindrical piers, and a single cylindrical pier) and two abutment types (a wing–wall abutment and a semi-circular abutment) were used. An acoustic Doppler velocimeter was used to measure the three-dimensional flow velocity for analyses of streamline, velocity magnitude, vertical velocity, and bed shear stress. The results showed that the velocity near the pier and abutment increased by up to 80%. The maximum scour depth around the abutment increased by up to 19%. In contrast, the maximum scour depth around the pier increased significantly by up to l71%. The presence of the pier in the vicinity of the abutment led to an increase in the scour hole volume by up to 87% relative to the case with a solitary abutment. Empirical equations were also derived to accurately estimate the maximum scour depth at the pier adjacent to the abutment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号