首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is shown that a polypyrrole, pyrrole black, may be formed anodically in several aqueous acids. The polypyrrole film shows a redox couple at less positive potentials than that required to form the film and the charge associated with these reduction and oxidation processes together with their stability to cycling varies with the anion in solution and the potential where the polypyrrole is formed; over-oxidation of the film caused by taking its potential too positive has a particularly disadvantageous affect. In the acids HBr and HI, the polypyrrole films can act as a storage medium for Br2 or I2 so that they may be used as a substrate for a X2/X electrode. Such electrodes may be charge/discharge cycled and the pyrrole/Br2 electrode shows promise as a battery positive electrode.  相似文献   

2.
A series of polypyrrole-LiFePO4 (PPy-LiFePO4) composites were synthesised by polymerising pyrrole monomers on the surface of LiFePO4 particles. AC impedance measurements show that the coating of polypyrrole significantly decreases the charge-transfer resistance of LiFePO4 electrodes. The electrochemical reactivity of polypyrrole and PPy-LiFePO4 composites for lithium insertion and extraction was examined by charge/discharge testing. The PPy-LiFePO4 composite electrodes demonstrated an increased reversible capacity and better cyclability, compared to the bare LiFePO4 electrode.  相似文献   

3.
The photoelectrochemical behaviour of n-type CdS (polycrystalline) containing small amount of PbS or CdSe in S2? /S2?n redox system has been studied. Mixed polycrystalline n-type CdSPbS electrodes were prepared by electrodeposition and the n-type CdSCdSe electrodes were made by partial replacement of sulphide ions of CdS electrode with selenide ions from a solution of sodium selenosulphate. It has been observed that both the mixed chalcogenide electrodes exhibit better photoresponse than the simple CdS electrode.  相似文献   

4.
The electrosynthesis of polypyrrole (PPy) on copper and brass (Cu–Zn alloy) electrodes was performed by anodic oxidation of pyrrole in a sodium tartrate (C4H4Na2O6 0.2 M) aqueous solution. The tartrate counter-ions slow the dissolution of the working electrode by leading to formation of a passivation layer on its surface, and pyrrole electropolymerization takes place. Strongly adherent and homogeneous polypyrrole films were electrodeposited on Cu and Cu–Zn alloy electrodes using different electrochemical techniques, such as potentiodynamic, galvanostatic and potentiostatic modes. The current densities of electropolymerization on brass are generally greater than those observed on copper. The corrosion behaviour of copper-coated electrodes, electrochemically modified by PPy films, was estimated by DC polarization and weight loss at different current densities in 0.1 M HCl solution. The synthesized polypyrrole films were characterised by several microscopic and spectroscopic techniques such as scanning electron microscopy, X-ray photo electron spectroscopy, Fourier transform infrared and Raman analysis. Galvanostatically deposited PPy films are shown to be an alternative to common black-nickel or black-chromium as a decorative top-coating.  相似文献   

5.
Jun Zhu 《Electrochimica acta》2006,51(19):4052-4060
Acidic and neutral Nafion® 115 perfluorosulphonate membranes have been modified by in situ polymerization of pyrrole using Fe(III) and H2O2 as oxidizing agents, in order to decrease methanol crossover in direct methanol fuel cells. Improved selectivities for proton over methanol transport and improved fuel cell performances were only obtained with membranes that were modified while in the acid form. Use of Fe(III) as the oxidizing agent can produce a large decrease in methanol crossover, but causes polypyrrole deposition on the surface of the membrane. This increases the resistance of the membrane, and leads to poor fuel cell performances due to poor bonding with the electrodes. Surface polypyrrole deposition can be minimized, and surface polypyrrole can be removed, by using H2O2. The use of Nafion in its tetrabutylammonium form leads to very low methanol permeabilities, and appears to offer potential for manipulating the location of polypyrrole within the Nafion structure.  相似文献   

6.
On the use of pyrrole black in zinc-halogen batteries   总被引:1,自引:0,他引:1  
The storage of Br2/Br and I2/I couples in a conducting polymer matrix, polypyrrole coated on a reticulated vitreous carbon disc, is described and the application of these positive electrodes in zinc-halogen model batteries is discussed. The cell based on the polypyrrole bromine adduct shows the higher open circuit voltage which, however, depends on the state of charge. Such cells self discharge thus limiting their usefulness. In the case of the iodine cell the self discharge is due to loss of iodine from the polymer to the bulk solution, but with the bromine cell the cause is oxidative bromination and depolymerization of the polypyrrole.  相似文献   

7.
Dense TiO2 and TiO2/CdSe coupled nanocrystalline thin films were synthesized onto ITO coated glass substrate by chemical route at relatively low temperature (≤100 °C). TiO2 films were nanocrystalline and crystallinity disappears after CdSe deposition as evidenced by X-ray powder diffraction. Surface morphology and physical appearance of films were studied from SEM and actual photo-images, reveals dense nature of TiO2 (10-12 nm spherical grains, faint violet) and CdSe (80-90 nm spherical grains, deep brown), respectively. Presence of two absorption edges in UV spectra implies existence of separate phases rather than composite formation. TiO2 film was found to have higher water contact angle (71°) than TiO2/CdSe (61°) and CdSe (56°). I-V and stability tests of photo-electrochemical cells were performed with TiO2 and TiO2/CdSe film electrodes (under light of illumination intensity 80 mW/cm2) in lithium iodide as an electrolyte using two-electrode system.  相似文献   

8.
The electrocatalytic oxidation of 2-chlorophenol on a composite PbO2/polypyrrole (PPy) electrode was carried out in 0.1 m H2SO4 solution. The composite PbO2/PPy electrode was developed by the codeposition of polypyrrole and PbO2 microparticles on the PbO2/SnO2/Ti substrate. The PbO2 microparticles and polypyrrole in the composite electrode were observed to be hydrophilic active-sites and hydrophobic inactive-sites, respectively. The results indicated that the conversion of 2-chlorophenol and the efficiency of electrooxidation were improved on the hydrophobic-modified PbO2/PPy electrode. The performance for electrooxidation of 2-chlorophenol on the composite PbO2/PPy electrode was better than that on Pt or PbO2/SnO2/Ti electrodes. The thicker the composite (PbO2/PPy) layer, the more active-sites in the composite electrode and the more 2-chlorophenol could be oxidized.  相似文献   

9.
H. Olivia  K. Honda 《Electrochimica acta》2004,49(13):2069-2076
A sensitive and stable glucose biosensor for in vivo monitoring has been developed using boron-doped diamond microfiber (BDDMF) electrodes. The electrodes were modified with platinum nano-particles to detect H2O2, which was enzymatically produced by glucose oxidase (GOx) immobilized on the electrode surface. The platinum-modified BDDMF (Pt-BDDMF) electrodes exhibited much higher sensitivity compared to Pt-microfiber electrodes, Pt electrodes and Pt-modified diamond thin film electrodes. Deposition conditions for Pt nano-particles on the BDDMF electrodes and immobilization of GOx were optimized. GOx/overoxidized polypyrrole (OPPy)/Pt-modified BDDMF electrodes were applied for continuous interference-free glucose monitoring. Amperometric measurements of glucose showed a linear response in the range of 1-70 mM, with an R.S.D. of 3.7% for five injections of 100 μM glucose. The electrodes exhibited good stability over 3 months with no detected anodic current for ascorbic acid (AA), which is an interfering compound.  相似文献   

10.
《Electrochimica acta》1987,32(10):1465-1468
The performance of polymer electrodes in lithium cells strongly depends on the conditions of electrosynthesis. In this work we describe the role of current density and of total charge of preparation on the cyclability of polypyrrole electrodes in a 1 M LiClO4 solution in propylene carbonate.  相似文献   

11.
Polypyrrole coatings were formed on stainless steel working electrodes in aqueous oxalic acid solution. The rate of formation of polypyrrole coatings on stainless steel increased proportionately with the current density but increased slightly with increased pyrrole concentration. Increasing oxalic acid concentration also had no significant change in the polymerization rate. The electropolymerization potential of pyrrole decreased significantly from 1.5 to 0.8 V versus SCE when the working electrode was polished. The polymerization potential, Ep, of pyrrole, increased however, with increased current density and decreased exponentially with the initial monomer and electrolyte concentration, respectively. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 2433–2440, 1997  相似文献   

12.
The electrochemical behaviour of polypyrrole coated electrodes has been examined by cyclic voltammetry. It has been found that polypyrrole coated electrodes are selective to Fe2+/Fe3+ couple but not to thionine/leucothionine couple. An improved output in the iron-thionine photogalvanic cell has been observed with polypyrrole coated selective electrodes.  相似文献   

13.
Thin polypyrrole coatings (∼ 10 μm thick) were formed on low carbon steel by an aqueous constant current electrochemical polymerization using oxalic acid as the electrolyte. The amount of polypyrrole coatings formed on steel increased with the applied current and monomer concentration. No significant change in the electropolymerization of pyrrole occurred as a result of increased electrolyte concentration. The induction time for electropolymerization decreased significantly with current density but was unaffected by the initial monomer and electrolyte concentration. The electropolymerization potential of pyrrole increased with increased current density (Cd), i.e., Ep = 0.62 + 0.41 [Cd], and decreased exponentially with increased monomer and electrolyte concentration, Ep = E0 exp-[M]. Scanning electron microscopy (SEM) showed that the microstructure of the polypyrrole coatings formed on steel was dependent on the current density to the extent that smoother and more uniform coatings are formed at low current density. © 1997 John Wiley & Sons, Inc. J Appl Polm Sci 65:417–424, 1997  相似文献   

14.
We report on the optimum electropolymerization conditions of polypyrrole (PPy) coatings on Mg alloy AZ91D electrodes from aqueous electrolytes of sodium salicylate via cyclic voltammetry (CV). Results show that initial and end potential values during the electrochemical coating procedure play an important role on the adhesion and corrosion performance of PPy films. Corrosion tests of AZ91D electrodes coated with PPy under optimized conditions show a good corrosion performance during 10 days in Na2SO4, without peeling off of these thin films.  相似文献   

15.
Peng Lu 《Electrochimica acta》2010,55(27):8126-8134
Using CdSe chemical bath deposition (CBD) we demonstrate the selective growth and deposition of monodisperse nanoparticles on functionalized self-assembled monolayers (SAMs) using time-of-flight secondary ion mass spectrometry and scanning electron microscopy. We show that the deposition mechanism involves both ion-by-ion growth and cluster-by-cluster deposition. On -COOH terminated SAMs strongly adherent CdSe nanoparticles form via a mixed ion-by-ion and cluster-by-cluster mechanism. Initially, Cd2+ ions form complexes with the terminal carboxylate groups. The Cd2+-carboxylate complexes then act as the nucleation sites for the ion-by-ion growth of CdSe. After a sufficient concentration of Se2− has formed in solution via the hydrolysis of selenosulfate ions, the deposition mechanism switches to cluster-by-cluster deposition. On -OH and -CH3 terminated SAMs monodisperse CdSe nanoparticles are deposited via cluster-by-cluster deposition and they do not bind strongly to the surface. Finally, under the appropriate experimental conditions we demonstrate the selective deposition of CdSe nanoparticles on patterned -CH3/-COOH SAMs.  相似文献   

16.
Supercritical carbon dioxide is an environmentally benign solvent but its low polarity limits electrochemical reactions in it. We now report the electrochemical polymerization of pyrrole in a supercritical carbon dioxide-in-water (C/W) emulsion in the presence of a surfactant. Black polypyrrole films were formed on Pt electrodes, whose conductivity was comparable with non-oriented polypyrrole prepared in conventional solvents. The structure of the polypyrrole films was confirmed by IR and Raman spectroscopic measurements. p-Toluenesulfonic acid was a suitable supporting electrolyte among the electrolytes examined for the electrochemical polymerization in the C/W emulsion. A typical nodular morphology was observed on the basis of the SEM and AFM measurements. Confocal scanning microscope revealed the formation of a fine uneven texture on the film prepared in the C/W emulsion.  相似文献   

17.
Conductive polypyrrole nanofibers with diameters in the range of about 70-300 nm were obtained using electrospinning processes. The conductive nanofibers had well-defined morphology and physical stability. Two methods were employed. Electrospun nanofibers were prepared from a solution mixture of polypyrrole (PPy), and poly(ethylene oxide) (PEO) acted as a carrier in order to improve PPy processability. Both the electrical conductivity and the average diameter of PPy nanofibers can be controlled with the ratio of PPy/PEO content. In addition, pure (without carrier) polypyrrole nanofibers were also able to be formed by electrospinning organic solvent soluble polypyrrole, [(PPy3)+ (DEHS)]x, prepared using the functional doping agent di(2-ethylhexyl) sulfosuccinate sodium salt (NaDEHS) [Jang KS, Lee H, Moon B. Synth Met 2004;143:289-94. [24]]. Electrospun blends of sulfonic acid (SO3H)-bearing water soluble polypyrrole, [PPy(SO3H)-DEHS], with PEO acting as a carrier, are also reported. The factors that facilitate the formation of electrical conduction paths through the electrospun nanofiber segments are discussed.  相似文献   

18.
Fabrication and characterization of high energy density supercapacitor based on graphite oxide/polypyrrole (GO/PPy) composites is reported. Improvement in charge storage has been obtained by exfoliation of graphite oxide sheets via intercalation of polypyrrole. The formation of composite has been shown by the analysis of X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and Fourier transfer of infrared spectroscopy data. Scanning electron and transmission electron microscopy clearly show sheet-like layered structure of graphite oxide surrounded by polypyrrole. Supercapacitors fabricated using this composite system result in a reduced equivalent series resistance value ~1.85 Ω. Such low value can be attributed to the intercalation of conducting polypyrrole into the graphite sheets. A specific capacitance of ~181 F g?1 in 1 M Na2SO4 aqueous electrolyte with a corresponding specific energy density of ~56.5 Wh kg?1 could be achieved. These values make GO-based materials suitable for their use as electrodes in high performance supercapacitors.  相似文献   

19.
Fluoride intercalation/deintercalation cycles on commercially available high purity graphite electrodes leads to powder formation and electrode damage. Formation of polypyrrole films of optimum thickness by potential cycling on the graphite surface before fluoride intercalation leads to good mechanical stability to the electrode during intercalation/deintercalation cycles. The intercalation potential shifts by 200 mV in the positive direction. The intercalation and deintercalation charges (Q a, Q c) also decrease slightly. However the charge recovery ratio (Q c/Q a) improves significantly. Since the polypyrrole layer is compact on the graphite surface, the present study indicates that the film offers mechanical stability to the graphite film without affecting the electronic conductivity of the surface. F ion transport through the film also occurs with a small overvoltage.  相似文献   

20.
Conducting polypyrrole (PPy) thin-film electrodes were prepared by the electropolymerization of pyrrole on gold-coated glass plates. Films of various roughnesses were obtained by the variation of the scan rates during electropolymerization. These thin films were modified by doping with 6mM of the dopant NiCl2. The surface morphology of the films was studied by scanning electron microscopy and atomic force microscopy (AFM), which suggested films prepared with a high scan rate were rougher in nature than the films produced with a low scan rate. The electrocatalytic reduction of nitrobenzene was carried out with these electrodes with the cyclic voltammetry technique in acetonitrile containing 0.1M HClO4 as a supporting electrolyte. The various results obtained show that the conducting PPy thin-film electrodes were catalytically active toward the electroreduction process. The modified PPy film electrodes doped with NiCl2 were more active toward nitrobenzene electroreduction than the PPy film alone. The results indicate that the roughness of the films played a very important role in determining their catalytic activity. The PPy films that were more rough in nature were catalytically more active than the smooth films; this may have been due to the availability of more reactive sites in the case of rough films. The apparent diffusion coefficients of the PPy film electrodes were also calculated. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号