首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this article, we describe and test a novel way to extend a low temperature scanning tunneling microscope with the capability to measure forces. The tuning fork that we use for this is optimized to have a high quality factor and frequency resolution. Moreover, as this technique is fully compatible with the use of bulk tips, it is possible to combine the force measurements with the use of superconductive or magnetic tips, advantageous for electronic spectroscopy. It also allows us to calibrate both the amplitude and the spring constant of the tuning fork easily, in situ and with high precision.  相似文献   

2.
A scanner for an ultrahigh-vacuum low-temperature scanning tunneling microscope is described. It has a high resonance frequency (>30 kHz) and a small thermal-drift rate (≤1 nm/°C) at room temperature. The scanner feeds the tip to the sample at a distance of up to 3 mm and positions it in the sample plane on a 4 × 4-mm area. These characteristics of the scanner allow one to study atomic structures at temperature variations from 5 to 300 K with objects under study remaining in view of the microscope. The scanner has a horizontal attachment for a sample with a size of up to 6 × 6 × 3mm and ensures a scanning field of 4.8 × 4.8 × 0.6 μm at 300 K and 0.8 × 0.8 × 0.1 μm at 5 K, as well as the possibility of heating to 150°C and easily replacing the sample and tip with vacuum manipulators.  相似文献   

3.
Low-temperature optical characterization of single quantum nanostructures can reveal detailed information on structure-dependent properties of these materials. We describe the development of a unique laser-scanning optical microscope capable of low-temperature single molecule/particle imaging and spectroscopy. Making use of the magnification of a microscope objective, the laser- scanning scheme of the present microscope allows for high-repeatability imaging over large sample areas. The microscope is utilized to measure the low-temperature Raman scattering spectra of individual single-walled carbon nanotubes and single molecule fluorescence spectra of conjugated polymers. The developed low-temperature microscope can be applied to study a wide array of nanomaterials at a single particle level.  相似文献   

4.
Huddee Ho  Paul West 《Scanning》1996,18(5):339-343
We have operated an atomic force microscope in ambient air with several oscillating cantilever modes to establish the optimal scanning parameters to maximize image resolution and to minimize probe and sample damage. This was done by scanning a surface in air and correlating scan parameters such as oscillation amplitude and damping with image resolution. We also examined the geometry of the probe with a scanning electron microscope, before and after scanning, in order to determine whether the scanning technique had an effect on the geometry of the probe tip. If the probe is oscillated such that it contacts the surface on each oscillation, substantial damage or “wear” to the probe occurs and significant degradation of image quality was observed. In ambient air, the optimal conditions are achieved when the probe penetrates the contamination layer and reverses direction before touching the surface. Under these “near-contact” conditions no probe damage is observed and high-image resolution can be maintained indefinitely.  相似文献   

5.
Imaging speed is one of the key factors limiting atomic force microscope's (AFM) wide applications. To improve its performance, a variable-speed scanning (VSS) method is designed in this note for an AFM. Specifically, in the VSS mode, the scanning speed is tuned online according to the feedback information to properly distribute imaging time along sample surface. Furthermore, some practical mechanism is proposed to determine the best time of moving the AFM tip to the next scanned point. The contrast experiment results show that the VSS method speeds up the imaging rate while ensuring image quality.  相似文献   

6.
A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p ≤10(-10) mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission.  相似文献   

7.
A sphere attached to a cantilever is used simultaneously as an atomic force microscope (AFM) tip and as a curved reflective surface for producing scanning reflection interference contrast microscope (RICM) images of fluorescent beads dried onto a glass slide. The AFM and RICM images are acquired in direct registration which enables the identification of individually excited beads in the AFM images. The addition of a sharp, electron beam-deposited tip to the sphere gives nanometer resolution AFM images without loss of optical contrast.  相似文献   

8.
We developed a setup that provides three independent optical access paths to the tunnel junction of an ultrahigh vacuum low temperature (4.2 K) scanning tunneling microscope (STM). Each path can be individually chosen to couple light in or out, or to image the tunnel junction. The design comprises in situ adjustable aspheric lenses to allow tip exchange. The heat input into the STM is negligible. We present in detail the beam geometry and the realization of lens adjustment. Measurements demonstrate the characterization of a typical light source exemplified by emission from tip-induced plasmons. We suggest employing the Fourier transforming properties of imaging lenses and polarization analysis to obtain additional information on the light emission process. Performance and future potential of the instrument are discussed.  相似文献   

9.
Conventional Raman spectroscopy (RS) suffers from low spatial resolution and low detection sensitivity due to the optical diffraction limit and small interaction cross sections. It has been reported that a highly localized and significantly enhanced electromagnetic field could be generated in the proximity of a metallic tip illuminated by a laser beam. In this study, a tip-enhanced RS system was developed to both improve the resolution and enhance the detection sensitivity using the tip-enhanced near-field effects. This instrument, by combining RS with a scanning tunneling microscope and side-illumination optics, demonstrated significant enhancement on both optical sensitivity and spatial resolution using either silver (Ag)-coated tungsten (W) tips or gold (Au) tips. The sensitivity improvement was verified by observing the enhancement effects on silicon (Si) substrates. Lateral resolution was verified to be below 100 nm by mapping Ag nanostructures. By deploying the depolarization technique, an apparent enhancement of 175% on Si substrates was achieved. Furthermore, the developed instrument features fast and reliable optical alignment, versatile sample adaptability, and effective suppression of far-field signals.  相似文献   

10.
Image blurring due to delocalization of inelastic events was studied for scanning transmission electron microscopy (STEM) of unstained thin sections. The delocalization probability was obtained from the angular distribution of inelastic scattering, which was calculated from experimental electron loss spectra of organic samples. This probability was implemented in a Monte Carlo program to simulate the effects of multiple scattering and delocalization for STEM images collected by either the annular detector or the spectrometer, and images generated by a combination of these two signals. Depending on the illumination, the detector geometry and the energy-loss range selected for imaging the annular detector image is blurred by a non-negligible fraction of inelastically scattered electrons. Simultaneous acquisition of an inelastic image using a spectrometer allows the blurring to be reduced by calculation of either the ratio or the difference of the two darkfield signals. While inherent nonlinearities reduce the interpretability of ratio-contrast images, difference-contrast improves the visibility of details submerged in a diffuse background without introducing artifacts.  相似文献   

11.
A high-pressure atomic force microscope (AFM) that enables in situ, atomic scale measurements of topography of solid surfaces in contact with supercritical CO(2) (scCO(2)) fluids has been developed. This apparatus overcomes the pressure limitations of the hydrothermal AFM and is designed to handle pressures up to 100 atm at temperatures up to ~350 K. A standard optically-based cantilever deflection detection system was chosen. When imaging in compressible supercritical fluids such as scCO(2), precise control of pressure and temperature in the fluid cell is the primary technical challenge. Noise levels and imaging resolution depend on minimization of fluid density fluctuations that change the fluid refractive index and hence the laser path. We demonstrate with our apparatus in situ atomic scale imaging of a calcite (CaCO(3)) mineral surface in scCO(2); both single, monatomic steps and dynamic processes occurring on the (1014) surface are presented. This new AFM provides unprecedented in situ access to interfacial phenomena at solid-fluid interfaces under pressure.  相似文献   

12.
13.
We developed a metrological atomic force microscope (MAFM) using a large range scanning dual stage and evaluated the performance in the measurement of lateral dimension. AFMs are widely used in nanotechnology for very high spatial resolution, but the limitation in measurement range should be overcome to expand its application in nanometrology. Therefore, we constructed new MAFM having a large measurement of 200 mm × 200 mm by using a dual stage and an AFM head module. The dual stage is composed of a coarse and a fine stage to obtain large scanning range and high resolution simultaneously. Precision surfaces and PTFE sliding pads guide the motion of coarse stage, drove by a fine pitch screw and DC motors. Flexure hinges and PZT actuators are utilized for the fine stage. Multi-axis interferometers measure the five degrees of freedom motion of the dual stage for the position control and the compensation of parasitic angular motions. The vertical displacement of AFM tip is measured by a built-in capacitive sensor in the AFM head module within the range of 38 μm. The performance of the dual stage was evaluated and the expanded uncertainty (k = 2) in the measurements of 1-D displacement L was estimated as $ U(L) = sqrt {(2.8nm)^2 + (3.0 times 10^{ - 7} times L)^2 } $ U(L) = sqrt {(2.8nm)^2 + (3.0 times 10^{ - 7} times L)^2 } . The relative uncertainty in pitch measurement was less than 0.02 % and the improvement of accuracy was verified by comparing with other MAFM, which are mostly due to the expansion of scan range and the compensation of angular motion. To enhance the performance, we will reduce the vibration and examine the motion of stage in the vertical direction during a long range scan.  相似文献   

14.
We describe the design and performance of a fast-scanning, variable temperature scanning tunneling microscope (STM) operating from 80 to 700 K in ultrahigh vacuum (UHV), which routinely achieves large scale atomically resolved imaging of compact metallic surfaces. An efficient in-vacuum vibration isolation and cryogenic system allows for no external vibration isolation of the UHV chamber. The design of the sample holder and STM head permits imaging of the same nanometer-size area of the sample before and after sample preparation outside the STM base. Refractory metal samples are frequently annealed up to 2000 K and their cooldown time from room temperature to 80 K is 15 min. The vertical resolution of the instrument was found to be about 2 pm at room temperature. The coarse motor design allows both translation and rotation of the scanner tube. The total scanning area is about 8 x 8 microm(2). The sample temperature can be adjusted by a few tens of degrees while scanning over the same sample area.  相似文献   

15.
A novel sample holder that enables atomic force microscopy (AFM) tips to be mounted inside a scanning electron microscopy (SEM) for the purpose of characterizing the AFM tips is described. The holder provides quick and easy handling of tips by using a spring clip to hold them in place. The holder can accommodate two tips simultaneously in two perpendicular orientations, allowing both top and side view imaging of the tips by the SEM.  相似文献   

16.
We propose a general procedure to determine the optimum imaging parameters (spring constant and oscillation amplitude) to obtain the optimum resolution in frequency modulation atomic force microscopy. We calculated the effective signal-to-noise ratio for various spring constants and oscillation amplitudes, based on the measurement of frequency shift and energy dissipation versus tip-sample distance curves, to find the optimum. We applied this procedure for imaging a lead phthalocyanine (PbPc) thin film on a MoS(2)(0001) substrate, and found that the optimum parameters were about 5 N/m and 20 nm, respectively. An improved signal-to-noise ratio was attained in a preliminary experiment using parameters which were close to the calculated optimum.  相似文献   

17.
Flaxer E 《Ultramicroscopy》2008,108(12):1536-1539
In order to protect the sample and the tip against current transients in a scanning tunneling microscope, which in most cases damages the scanned surface and the tip, when using a bias higher than 1V, we have designed a simple and low-cost circuit that limits the tunneling current. During the evolution of the current transient, when the current exceeds a pre-determined value, a fast feedback control mechanism immediately reduces the bias and prevents the current transient from developing. In addition, we designed a fast pre-amplifier that works with this controller. We have shown that this mechanism provides a better scanning image compared to a system without such a mechanism.  相似文献   

18.
Nano-scale structures of the YOYO-1-stained barley chromosomes and lambda-phage DNA were investigated by scanning near-field optical/atomic force microscopy (SNOM/AFM). This technique enabled precise analysis of fluorescence structural images in relation to the morphology of the biomaterials. The results suggested that the fluorescence intensity does not always correspond to topographic height of the chromosomes, but roughly reflects the local amount and/or density of DNA. Various sizes of the bright fluorescence spots were clearly observed in fluorescence banding-treated chromosomes. Furthermore, fluorescence-stained lambda-phage DNA analysis by SNOM/AFM demonstrated the possibility of nanometer-scale imaging for a novel technique termed nano-fluorescence in situ hybridization (nano-FISH). Thus, SNOM/AFM is a powerful tool for analyzing the structure and the function of biomaterials with higher resolution than conventional optical microscopes.  相似文献   

19.
Scanning force microscopy (SFM) holds great promise for biological research. Two major problems that have confronted imaging with the scanning force microscope have been the distortion of the image and overestimation in measurements of lateral size due to the varying geometry and characteristics of the scanning tip. In this study, spherical colloidal gold particles (10, 20 and 40 nm in diameter) were used to determine (1) tip parameters (size, shape and semivertical angle); (2) the distortion of the image caused by the tip; and (3) the overestimation or broadening of lateral dimensions. These gold particles deviate little in size, are rigid and have a size similar to biological macromolecules. Images of the colloidal gold particles by SFM were compared with those obtained by electron microscopy (EM). The height of the gold particles as measured by SFM and EM was comparable and was little affected by the tip geometry. The measurements of the lateral dimensions of colloidal gold, however, showed substantial differences between SFM and EM in that SFM resulted in an overestimate of the lateral dimensions. Moreover, the distortion of images and broadening of lateral dimensions were specific to the SFM tip used. The calibration of the SFM tip with mica provided little clue as to the type of distortion and the amount of lateral broadening observed when the larger gold particles were scanned. The SFM image also depended on the orientation of the tip with respect to the specimen. Our results suggest that quantitative SFM imaging requires calibration to identify and account for both the distortions and the magnitude of lateral broadening caused by the cantilever tip. Calibration with gold particles is fast and nondestructive to the tip. The raw imaging data of the specimen can be corrected for the tip effect and true structural information can be derived. In summary, we present a simple and practical method for the calibration of the SFM tip using gold particles with a size in the range of biomacromolecules that allows: (1) selection of a cantilever tip that produces an image with minimal distortion; (2) quantitative determination of tip parameters; (3) reconstruction of the shape of the tip at different heights from the tip apex; (4) appreciation of the type of distortion that may be introduced by a specific tip and quantification of the overestimation of the lateral dimensions; and (5) calculation of the true structure of the specimen from the image data. The significance is that such calibration will permit quantitative and accurate imaging with SFM.  相似文献   

20.
A commercial atomic force microscope (AFM), originally designed for operation in ambient conditions, was placed inside a compact aluminum chamber, which can be pumped down to high vacuum levels or filled with a desired gaseous atmosphere, including humidity, up to normal pressure. The design of this environmental AFM is such that minimal intrusion is made to the original setup, which can be restored easily. The performance inside the environmental chamber is similar to the original version.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号