首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present here the use of absorption spectroscopy of the continuum radiation from x-pinch-produced point x-ray sources as a diagnostic to investigate the properties of aluminum plasmas created by pulsed power machines. This technique is being developed to determine the charge state, temperature, and density as a function of time and space under conditions that are inaccessible to x-ray emission spectroscopic diagnostics. The apparatus and its characterization are described, and the spectrometer dispersion, magnification, and resolution are calculated and compared with experimental results. Spectral resolution of about 5000 and spatial resolution of about 20 μm are demonstrated. This spectral resolution is the highest available to date in an absorption experiment. The beneficial properties of the x-pinch x-ray source as the backlighter for this diagnostic are the small source size (<5 μm), smooth continuum radiation, and short pulse duration (<0.1 ns). Results from a closely spaced (1 mm) exploding wire pair are shown and the general features are discussed.  相似文献   

2.
Pulsed polarimetry in combination with a high speed photographic technique based on the optical Kerr effect is described. The backscatter in a pulsed polarimeter is directed through a scattering cell and photographed using an ~1?ps shutter, essentially freezing the intensity pattern. The image provides both the local electron density and magnetic field distributions along and transverse to the laser sightline. Submillimeter spatial resolution is possible for probing wavelengths in the visible due to the high densities and strong optical activity. Pulsed polarimetry is thereby extended to centimeter-sized plasmas with n(e)>10(19)-10(20)?cm(-3) and B>20-100?T (MG) produced by multiterawatt, multimega-ampere electrical drivers, wire Z pinches, and liner imploded magnetized plasmas.  相似文献   

3.
In the pursuit of novel, laser-produced x-ray sources for medical imaging applications, appropriate instrumental diagnostics need to be developed concurrently. A type of transmission crystal spectroscopy has previously been demonstrated as a survey tool for sources produced by high-power and high-energy lasers. The present work demonstrates the extension of this method into the study of medium-intensity laser driven hard x-ray sources with a design that preserves resolving power while maintaining high sensitivity. Specifically, spectroscopic measurements of characteristic Kα and Kβ emissions were studied from Mo targets irradiated by a 100 fs, 200 mJ, Ti: sapphire laser with intensity of 10(17) W/cm(2) to 10(18) W∕cm(2) per shot. Using a transmission curved crystal spectrometer and off-Rowland circle imaging, resolving powers (E/ΔE) of around 300 for Mo Kα(2) at 17.37 keV were obtained with an end-to-end spectrometer efficiency of (1.13 ± 0.10) × 10(-5). This sensitivity is sufficient for registering x-ray lines with high signal to background from targets following irradiation by a single laser pulse, demonstrating the utility of this method in the study of the development of medium-intensity laser driven x-ray sources.  相似文献   

4.
We report here the calibration and analysis techniques used to obtain spatially resolved density and temperature measurements of a pair of imploding aluminum wires from x-ray absorption spectra. A step wedge is used to measure backlighter fluence at the film, allowing transmission through the sample to be measured with an accuracy of ±14% or better. A genetic algorithm is used to search the allowed plasma parameter space and fit synthetic spectra with 20?μm spatial resolution to the measured spectra, taking into account that the object plasma nonuniformity must be physically reasonable. The inferred plasma conditions must be allowed to vary along the absorption path in order to obtain a fit to the spectral data. The temperature is estimated to be accurate to within ±25% and the density to within a factor of two. This information is used to construct two-dimensional maps of the density and temperature of the object plasma.  相似文献   

5.
A fast ( approximately 300 ns), large-signal ( greater, similar1 V), free-standing foil bolometer was developed for measuring ultrasoft x-ray burst fluences. The results of bolometer measurements of the radiation output of an imploding foil liner plasma indicate yields of several tens of kJ, assuming isotropic emission. This is in substantial agreement with filtered metal photocathode (x-ray diode) measurements. The bolometer design, response function, and comparison with x-ray photodiode data are discussed. This type of bolometer is particularly applicable to radiation measurements of high-energy, destructive pulsed plasmas such as high-energy imploding liner plasmas.  相似文献   

6.
A 2400 lines/mm variable-spaced grating spectrometer has been used to measure soft x-ray emission (8-22 A?) from laser-produced plasma experiments at Lawrence Livermore National Laboratory's Compact Multipulse Terrawatt (COMET) Laser Facility. The spectrometer was coupled to a Kentech x-ray streak camera to study the temporal evolution of soft x rays emitted from the back of the Mylar and the copper foils irradiated at 10(15)?W/cm(2). The instrument demonstrated a resolving power of ~120 at 19 A? with a time resolution of 31 ps. The time-resolved copper emission spectrum was consistent with a photodiode monitoring the laser temporal pulse shape and indicated that the soft x-ray emission follows the laser heating of the target. The time and spectral resolutions of this diagnostic make it useful for studies of high temperature plasmas.  相似文献   

7.
Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian function associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. These measurements are used to gain a better understanding of Z-pinch equilibria.  相似文献   

8.
The local modification of an insulating GdBa2Cu3O6.5 thin film, made superconducting by illumination with a near-field scanning optical microscope (NSOM), is reported. A 100-nm aperture NSOM probe acts as a sub-wavelength light source of wavelength lambda(exc) = 480-650 nm, locally generating photocarriers in an otherwise insulating GdBa2-Cu3O6.5 thin film. Of the photogenerated electron-hole pairs, electrons are trapped in the crystallographic lattice, defining an electrostatic confining potential to enable the holes to move. Reflectance measurements at lambda = 1.55 microm at room temperature show that photocarriers can be induced and constrained to move on a approximately 200 nm scale for all investigated lambda(exc). Photogenerated wires present a superconducting critical temperature Tc= 12 K with a critical current density Jc = 10(4) A cm(-2). Exploiting the flexibility provided by photodoping through a NSOM probe, a junction was written by photodoping a wire with a narrow (approximately 50 nm) under-illuminated gap. The strong magnetic field modulation of the critical current provides a clear signature of the existence of a Josephson effect in the junction.  相似文献   

9.
High resolution density diagnostics are difficult in high energy density laboratory plasmas (HEDLP) experiments due to the scarcity of probes that can penetrate above solid density plasmas. Hard x-rays are one possible probe for such dense plasmas. We study the possibility of applying an x-ray method recently developed for medical imaging, differential phase-contrast with Talbot-Lau interferometers, for the diagnostic of electron density and small-scale hydrodynamic instabilities in HEDLP experiments. The Talbot method uses micro-periodic gratings to measure the refraction and ultra-small angle scatter of x-rays through an object and is attractive for HEDLP diagnostic due to its capability to work with incoherent and polychromatic x-ray sources such as the laser driven backlighters used for HEDLP radiography. Our paper studies the potential of the Talbot method for HEDLP diagnostic, its adaptation to the HEDLP environment, and its extension of high x-ray energy using micro-periodic mirrors. The analysis is illustrated with experimental results obtained using a laboratory Talbot interferometer.  相似文献   

10.
Atmospheric-pressure microplasma jets (APmicroPJs) of Ar and ArO(2) gases were generated from the tip of a stainless steel surgical needle having outer and inner diameters of 0.4 and 0.2 mm, respectively, with a rf excitation of 13.56 MHz. The steel needle functions both as a powered electrode and a gas nozzle. The operating power is 1.2-6 W and the corresponding peak-to-peak voltage Vp.p. is about 1.5 kV. The APmicroPJ was applied to the localized etching of a polyamide-imide insulator film (thickness of 10 microm) of a copper winding wire of 90 microm diameter. The insulator film around the copper wire was completely removed by the irradiated plasma from a certain direction without fusing the wire. The removal time under the Ar APmicroPJ irradiation was only 3 s at a rf power of 4 W. Fluorescence microscopy and scanning electron microscope images reveal that good selectivity of the insulator film to the copper wire was achieved. In the case of ArO(2) APmicroPJ irradiation with an O(2) concentration of 10% or more, the removed copper surface was converted to copper monoxide CuO.  相似文献   

11.
A method of thermodynamical calculation of thin metal wire heating during its electrical explosion is discussed. The technique is based on a calculation of Joule energy deposition taking into account the current wave form and the temperature dependence of the resistivity and heat capacity of the metal. Comparing the calculation to a set of exploding tungsten wire experiments demonstrates good agreement up to the time of melting. Good agreement is also demonstrated with resistive magnetohydrodynamics simulation. A similar thermodynamical calculation for Mo, Ti, Ni, Fe, Al, and Cu shows good agreement with experimental data. The thermodynamical technique is useful for verification of the voltage measurements in exploding wire experiments. This technique also shows good agreement with an exploding W foil experiment.  相似文献   

12.
X-ray spectroscopy of mid-Z metal impurities is important in the study of tokamak plasmas and may reveal potential problems if their contribution to the radiated power becomes substantial. The analysis of the data from a high-resolution x-ray and extreme ultraviolet grating spectrometer, XEUS, installed on NSTX, was performed focused on a detailed study of x-ray spectra in the range 7-18 A?. These spectra include not only commonly seen iron spectra but also copper spectra not yet employed as an NSTX plasma impurity diagnostic. In particular, the L-shell Cu spectra were modeled and predictions were made for identifying contributions from various Cu ions in different spectral bands. Also, similar spectra, but from much denser Cu plasmas produced on the UNR Z-pinch facility and collected using the convex-crystal spectrometer, were analyzed and compared with NSTX results.  相似文献   

13.
Here, we report on a novel experimental apparatus for performing time-resolved soft x-ray absorption spectroscopy in the sub-ns time scale using non-hybrid multi-bunch mode synchrotron radiation. The present setup is based on a variable repetition rate Ti:sapphire laser (pump pulse) synchronized with the ~500 MHz x-ray synchrotron radiation bunches and on a detection system that discriminates and singles out the significant x-ray photon pulses by means of a custom made photon counting unit. The whole setup has been validated by measuring the time evolution of the L(3) absorption edge during the melting and the solidification of a Ge single crystal irradiated by an intense ultrafast laser pulse. These results pave the way for performing synchrotron time-resolved experiments in the sub-ns time domain with variable repetition rate exploiting the full flux of the synchrotron radiation.  相似文献   

14.
First results of ion and electron temperature profile measurements from the x-ray imaging crystal spectrometer (XICS) diagnostic on the Large Helical Device (LHD) are presented. This diagnostic system has been operational since the beginning of the 2011 LHD experimental campaign and is the first application of the XICS diagnostic technique to helical plasma geometry. The XICS diagnostic provides measurements of ion and electron temperature profiles in LHD with a spatial resolution of 2 cm and a maximum time resolution of 5 ms (typically 20 ms). Ion temperature profiles from the XICS diagnostic are possible under conditions where charge exchange recombination spectroscopy (CXRS) is not possible (high density) or is perturbative to the plasma (low density or radio frequency heated plasmas). Measurements are made by using a spherically bent crystal to provide a spectrally resolved 1D image of the plasma from line integrated emission of helium-like Ar(16 +). The final hardware design and configuration are detailed along with the calibration procedures. Line-integrated ion and electron temperature measurements are presented, and the measurement accuracy is discussed. Finally central temperature measurements from the XICS system are compared to measurements from the Thomson scattering and CXRS systems, showing excellent agreement.  相似文献   

15.
X-ray diffraction was demonstrated from shock-compressed polycrystalline metals on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25-125 microm thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, which was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes.  相似文献   

16.
A prototype framing x-ray camera has been developed for photographic studies of inertial confinement fusion (ICF) targets irradiated by charged particle beams. Electron images from five, independently gated, microchannel plates are transported out of the radiation field by means of a toroidal magnetic field and are permanently recorded on film. The calculated, effective exposure time is 相似文献   

17.
An X-ray detector with a dielectric (KU1 optical glass) used as a sensitive element is described. Operation of the detector is based on the discovered effect of electric-field generation in a dielectric under exposure to radiation. The measurements were taken at the Angara-5-1 facility, at which the radiation source is megaampere Z-pinch plasma. It is shown that when the radiation power incident on the detector is approximately 1 MW/cm2, the detector response is a few volts with a time resolution of 1–2 ns. This effect is thought to be caused by “hot” electrons induced by radiation in the dielectric. The estimates for these experimental conditions are presented.  相似文献   

18.
A miniature conductivity wire-mesh sensor for gas-liquid two-phase flow measurement in small channels is presented. The sensor design is similar to the conventional wire-mesh sensor for larger flow cross sections with wire electrodes stretched across the flow channel in two adjacent planes and with perpendicular wire orientation between planes. Conductivity measurement is performed by special electronics which consecutively applies bipolar voltage pulse excitation to the sender wires and measures electrical current flow in the wire crossings at the receiver wires. The new design is based on printed circuit board technology. A prototypical sensor made of 2×16 stainless steel wires each of 50 μm diameter was manufactured and applied to two-phase flow measurement inside the mixing chamber of an effervescent atomizer. Accuracy of the sensor was studied for static liquid distributions using microphotography and for dynamic two-phase flow by comparison of wire-mesh sensor data with radial gas fraction profiles obtained from X-ray microtomography measurements.  相似文献   

19.
激光等离子体X射线极化光谱研究   总被引:1,自引:1,他引:0  
为了诊断激光等离子体X射线的极化光谱,研制了一种新型的基于空间分辨的极化谱仪。将平面晶体和球面弯晶色散元件在极化谱仪内正交布置,即在水平通道用PET平面晶体作为色散元件,而在垂直通道用Mica球面弯晶作为色散元件,球面半径为380mm。信号采用成像板进行接收,有效接收面积为30×80mm,从等离子体光源经晶体到成像板的光路约为980mm。物理实验首次在中国工程物理研究院激光聚变研究中心“2×10J激光装置”上进行,成像板获得了铝激光等离子体X射线的光谱空间分辨信号。实验结果表明该谱仪具有较高谱分辨率,适合激光等离子体x射线极化光谱的诊断。  相似文献   

20.
We demonstrate the potential of x-ray excited luminescence microscopy for full-field elemental and magnetic sensitive imaging using a commercially available optical microscope, mounted on preexisting synchrotron radiation (SR) beamline end stations. The principal components of the instrument will be described. Bench top measurements indicate that a resolution of 1 μm or better is possible; this value was degraded in practice due to vibrations and∕or drift in the end station and associated manipulator. X-ray energy dependent measurements performed on model solar cell materials and lithographically patterned magnetic thin film structures reveal clear elemental and magnetic signatures. The merits of the apparatus will be discussed in terms of conventional SR imaging techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号