首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ac susceptibility and magnetization curves of a glued Dy(2)O(3) powder sample are measured by an ac susceptometer and a dc superconducting quantum interference device magnetometer, both of which have been calibrated previously. It is shown that the magnetic moment of the paramagnetic sample as a function of field and temperature may be accurately expressed by a combination of the Curie-Weiss law and the Langevin function at T > 45 K with three adjusting parameters, so that the dc magnetization curves and the magnitude and phase of ac susceptibility at different values of dc bias field measured by any magnetometer can be calibrated by using Dy(2)O(3) as a standard. The expressions are empirical and cannot be justified in the entire field and temperature range by existing theories of paramagnetism. Below 10 K, indication of approaching a possible phase transition is found. It is shown that pure Dy(2)O(3) powder may be used as a primary standard, with susceptibility [13.28(T + 17)](-1) emu/Oe/g at T > 50 K and H < 10 kOe, in consistency with the Curie-Weiss law and the quantum mechanical theory of paramagnetism.  相似文献   

2.
We present the design, fabrication, integration, testing, and calibration of a high field superconducting quantum interference device (SQUID) magnetometer. The system is based on dc SQUID sensor with flux locked loop readout electronics. The design is modular and all the subsystems have been fabricated in the form of separate modules in order to simplify the assembly and for ease of maintenance. A novel feature of the system is that the current induced in the pickup loop is distributed as inputs to two different SQUID sensors with different strengths of coupling in order to improve the dynamic range of the system. The SQUID magnetometer has been calibrated with yttrium iron garnet (YIG) sphere as a standard reference material. The calibration factor was determined by fitting the measured flux profile of the YIG sphere to that expected for a point dipole. Gd(2)O(3) was also used as another reference material for the calibration and the effective magnetic moment of the Gd(3+) could be evaluated from the temperature dependent magnetization measurements. The sensitivity of the system has been estimated to be about 10(-7) emu at low magnetic fields and about 10(-5) emu at high magnetic fields ~7 T.  相似文献   

3.
In this paper we describe and test a setup for the characterization of the magnetocaloric effect around room temperature. The setup is a differential calorimeter able to measure both the specific heat c(p)(H,T) under constant magnetic field H and the isothermal entropy change induced by changing H, Δs(H,T), in the room temperature range. The setup uses miniaturized Peltier cells to measure the heat flux, with resolution of about 1 μW, and power Peltier cells to regulate the temperature in the range from 243 K (-30 °C) to 343 K (+70 °C). The kinetic effects due to the heat capacity of the measuring cells are taken into account by a simple model of the heat flux diffusion in the calorimetric cell. As measurement examples, we show the characterization of the magnetocaloric effect in magnetic materials with a second order transition [without latent heat and without hysteresis, as in the La(1)(Fe(1-x-y)Co(y)Si(x))(13) alloy with x=0.077 and y=0.079] and with a first order transitions (with latent heat and hysteresis as in Ni(50)Mn(36)Co(1)Sn(13)). As a result we compare the entropy change Δs(H,T) derived from (i) the integration of the specific heat c(p)(H,T) and (ii) the direct isothermal measurements, obtaining an excellent agreement.  相似文献   

4.
A high-sensititity magnetometer intended for studying the magnetic properties of materials in pulsed magnetic fields of up to 43 T is described. A distinctive feature of the magnetometer is its method for compensating pickups generated in the magnetometer sensing element by a pulsed field. The commonly used uniaxial high-order compensation is replaced by a triaxial compensation of the lowest (quadrupole) order, combined with a transverse arrangement of the main probe coils. This method has allowed us to achieve a compensation level of the signal in the working coil (with an inner diameter of 1.4 or 1.75 mm) of the magnetometer without a sample of up to 10−6 for the longitudinal and 10−4 for the transverse field components. The magnetic moment sensitivity of the magnetometer is 10−4 mA·m2 in fields below 10 T and 10−3 mA·m2 at a field pulse amplitude of 35 T. A deviation of the compensation is below 2×10−4 for a temperature increase from 77 to 300 K and below 5×10−5 after sample replacement. The sample temperature is controlled by a fast-acting temperature control system in a range of 6–300 K to an accuracy of 0.3–0.05 K.  相似文献   

5.
To simultaneously perform magnetization and magnetostriction measurements in high magnetic fields, a miniaturized device was developed that combines an inductive magnetometer with a capacitive dilatometer and, therefore, it is called "dilamagmeter." This combination of magnetic and magnetoelastic investigations is a new step to a complex understanding of solid state properties. The whole system can be mounted in a 12 mm clear bore of any cryostat usually used in nondestructive pulsed high field magnets. The sensitivity of both methods is about 10(-5) A m(2) for magnetization and 10(-5) relative changes in length for striction measurements. Measurements on a GdSi single crystal, which are corrected by the background signal of the experimental setup, agree well with the results of steady field experiments. All test measurements, which are up until now performed in the temperature range of 4-100 K, confirm the perfect usability and high stability in pulsed fields up to 50 T with a pulse duration of 10 ms.  相似文献   

6.
We have designed and tested a set of five miniature nested magnetic shields constructed of high-permeability material, with external volumes for the individual shielding layers ranging from 0.01 to 2.5 cm(3). We present measurements of the longitudinal and transverse shielding factors (the ratio of external to internal magnetic field) of both individual shields and combinations of up to three layers. The largest shielding factor measured was 6 x 10(6) for a nested set of three shields, and from our results we predict a shielding factor of up to 1 x 10(13) when all five shields are used. Two different techniques were used to measure the internal field: a chip-scale atomic magnetometer and a commercially available magnetoresistive sensor. Measurements with the two methods were in good agreement.  相似文献   

7.
The results of investigating the lower sensitivity threshold of a magnetoresistive transducer converting the magnetic field induction into an electric signal are presented. The voltage fluctuation amplitude measured in terms of the magnetic field induction units amounts to 25 × 10–9 T at the transducer output. It is found that after termination of the action of the magnetic field the output transducer voltage returns to the zero level with a delay. The duration of this return may amount to tens of minutes (depending on the induction and duration of the field action). A digital magnetometer with the scale of ±200 T graduated to 0.1 T is fabricated on the basis of the magnetoresistive transducer.  相似文献   

8.
We present the setup of a variable-angle vector-magneto-optical generalized ellipsometer (VMOGE) in the spectral range from 300 to 1100 nm using an octupole magnet, and demonstrate VMOGE measurements of the upper 3 × 4 submatrix of the Mueller matrix in a magnetic field of arbitrary orientation and magnitude up to 0.4 T at room temperature. New "field orbit" measurements can be performed without physically moving the sample, which is useful to study magnetic multilayer or nanostructure samples. A 4 × 4 matrix formalism is employed to model the experimental VMOGE data. Searching the best match model between experimental and calculated VMOGE data, the magneto-optical dielectric tensor ?(MO) of each layer in a multilayer sample system can be determined. In this work, we assume that the nonsymmetric terms of ?(MO) are induced by an external magnetic field and depend linearly on the sample magnetization. Comparison with vector magnetometer measurements can provide the anisotropic magneto-optical coupling constants Q(x), Q(y), Q(z).  相似文献   

9.
A high energy focused ion beam microprobe using a doublet arrangement of short magnetic quadrupole lenses was used to focus 1-3 MeV protons to spot sizes of 1x1 microm2 and 1-4.5 MeV carbon and silicon ion beams to spot sizes of 1.5x1.5 microm2. The results presented clearly demonstrate that this simple doublet configuration can provide high energy microbeams for microanalysis and microfabrication applications.  相似文献   

10.
We report on the design and implementation of a rotating sample magnetometer (RSM) operating in the variable temperature insert (VTI) of a cryostat equipped with a high-field magnet. The limited space and the cryogenic temperatures impose the most critical design parameters: the small bore size of the magnet requires a very compact pick-up coil system and the low temperatures demand a very careful design of the bearings. Despite these difficulties the RSM achieves excellent resolution at high magnetic field sweep rates, exceeding that of a typical vibrating sample magnetometer by about a factor of ten. In addition the gas-flow cryostat and the high-field superconducting magnet provide a temperature and magnetic field range unprecedented for this type of magnetometer.  相似文献   

11.
The high-magnetic-field tensiometer (HMFT) has been developed to measure surface tensions of liquids in high magnetic field based on the ring method. The HMFT was composed of three parts: weighing system, liquid circulatory system, and supporting system. Some improvements for the conventional tensiometer were made in order to overcome the magnetic effects. The surface tension of acetone was measured using the HMFT. The results showed that the surface tension of acetone linearly varied with the magnetic field intensity and increased by 0.69 mN m(-1) or 2.9% in the magnetic field of 10 T. The HMFT could better determine the surface tension of liquids with and without the magnetic field and it provided a simple and practical way to measure the surface tension of liquids at room temperature in a high magnetic field.  相似文献   

12.
TiO2/SiO2/Fe3O4 nanoparticles have bigger specific area which can greatly increase the efficiency of photo-catalysis.The TiO2/SiO2/Fe3O4 particles in nano scale were prepared with reduction method at high temperature in this paper,and their morphology,particle size and magnetic property were characterized by transmission electron microscope(TEM),Xray diffraction(XRD) and magnetometer.The results show that the grain sizes of Fe3O4,SiO2-Fe3O4 and TiO2-SiO2-Fe3O4 particles were 50nm,70nm and 120nm,respectively.With the modification of SiO2,Fe3O4 magnetic cores are protected from oxidation.Moreover,by the addition of TiO2 function layer,TiO2-SiO2-Fe3O4 functional nanoparticles,with the saturation magnetization density of 34.1emu/g,is magnetically recoverable.The processes of this method are so simple that the nanoparticles can be produced in large quantity.  相似文献   

13.
Takezaki T  Sueoka K 《Ultramicroscopy》2008,108(9):970-974
We have demonstrated the capability of scanning magnetoresistance microscope (SMRM) to be used for quantitative current measurements. The SMRM is a magnetic microscope that is based on an atomic force microscope (AFM) and simultaneously measures the localized surface magnetic field distribution and surface topography. The proposed SMRM employs an in-house built AFM cantilever equipped with a miniaturized magnetoresistive (MR) sensor as a magnetic field sensor. In this study, a spin-valve type MR sensor with a width of 1 microm was used to measure the magnetic field distribution induced by a current carrying wire with a width of 5 microm and a spacing of 1.6 microm at room temperature and under ambient conditions. Simultaneous imaging of the magnetic field distribution and the topography was successfully performed in the DC current ranging from 500 microA to 8 mA. The characterized SV sensor, which has a linear response to magnetic fields, offers the quantitative analysis of a magnetic field and current. The measured magnetic field strength was in good agreement with the result simulated using Biot-Savart's law.  相似文献   

14.
A commercial superconducting quantum interference device (SQUID) setup (MPMS 5S from Quantum Design), equipped with a magnetic ac susceptibility option, is modified for measurements of the linear magnetoelectric (ME) effect, i.e., of the magnetic moment induced by an applied external electric field in a ME sample. Test measurements on a Cr(2)O(3) (111) single crystal are in excellent agreement with previously reported data of its ME susceptibility. The main advantages of the proposed setup are the improved precision due to the high sensitivity of the SQUID magnetometer in combination with the lock-in technique and a relatively simple experimental realization.  相似文献   

15.
The local modification of an insulating GdBa2Cu3O6.5 thin film, made superconducting by illumination with a near-field scanning optical microscope (NSOM), is reported. A 100-nm aperture NSOM probe acts as a sub-wavelength light source of wavelength lambda(exc) = 480-650 nm, locally generating photocarriers in an otherwise insulating GdBa2-Cu3O6.5 thin film. Of the photogenerated electron-hole pairs, electrons are trapped in the crystallographic lattice, defining an electrostatic confining potential to enable the holes to move. Reflectance measurements at lambda = 1.55 microm at room temperature show that photocarriers can be induced and constrained to move on a approximately 200 nm scale for all investigated lambda(exc). Photogenerated wires present a superconducting critical temperature Tc= 12 K with a critical current density Jc = 10(4) A cm(-2). Exploiting the flexibility provided by photodoping through a NSOM probe, a junction was written by photodoping a wire with a narrow (approximately 50 nm) under-illuminated gap. The strong magnetic field modulation of the critical current provides a clear signature of the existence of a Josephson effect in the junction.  相似文献   

16.
由于串扰、AC-Stark效应等因素的影响,导致SERF原子磁强计的空间位置(三维坐标以及灵敏轴指向)以及增益系数发生偏差,直接影响磁源定位的精度。针对以上问题,提出了一种自适应的SERF原子磁强计参数标定方法。基于磁偶极子模型设计了标定装置,装置由24个精密加工的圆线圈组成,用来施加标定磁源。提出了一种改进的自适应精英遗传算法,以同时标定磁强计的相关参数。实验结果表明,算法拟合得到的实际磁场曲线和理论磁场曲线之间的平均相关系数为99.55%,x轴坐标值漂移最明显,平均绝对偏差为2.63 mm,灵敏轴的平均绝对偏差为8.21°,这意味着在磁源定位前,需要对传感器参数进行准确测量。提出的标定方法对于提高磁源定位精度具有一定的参考意义。  相似文献   

17.
A new calorimeter for measurements of the heat capacity and magnetocaloric effect of small samples in pulsed magnetic fields is discussed for the exploration of thermal and thermodynamic properties at temperatures down to 2 K. We tested the method up to μ(0)H=50?T, but it could be extended to higher fields. For these measurements we used carefully calibrated bare-chip Cernox(?) and RuO(2) thermometers, and we present a comparison of their performances. The monotonic temperature and magnetic field dependences of the magnetoresistance of RuO(2) allow thermometry with a precision as good as ±4 mK at T=2?K. To test the performance of our calorimeter, heat capacity and magnetocaloric effect for the spin-dimer compound Sr(3)Cr(2)O(8) and the triangular lattice antiferromagnet RbFe(MoO(4))(2) are presented.  相似文献   

18.
A simple precooling system for a superconducting magnet is developed using a Cryomech GB02 cryocooler and gas filled thermal switches. A superconducting magnet (NbTi wire, 7 T of maximum field, 5.6 kg of weight) is precooled to 16 K in about 70 h without any manual control. Heat transfer rate of each thermal switch (H2 or N2 gas filled at 1.3 MPa at room temperature) is about 3x10(-1) W/K during the ON state, and 5x10(-3) W/K during the OFF state.  相似文献   

19.
A new high resolution polar magneto-optical (MO) Kerr magnetometer, devoted to the study of nanometer sized elements with perpendicular magnetic anisotropy, is described. The unique performances of this setup in terms of sensitivity (1.2x10(-15) emu), stability (lateral drift +/-35 nm over 3 h), and resolution (laser spot full width at half maximum down to 470 nm) are demonstrated, and illustrated by Kerr hysteresis loop measurements on a unique ultrathin magnetic nanodot, and over small segments of ultranarrow magnetic tracks. Large scanning MO Kerr microscopy images were also obtained with the same performances.  相似文献   

20.
Nuclear magnetic resonance (NMR) is a powerful technique for the structure elucidation of organic molecules and significantly important in the pharmaceutical industry supporting the discovery and development of drug substances or active pharmaceutical ingredients (APIs). Following an initial study and assessment of a prototype NMR instrument with a high-temperature superconducting (HTS) power-driven magnet of 9.4?T (400?MHz for 1H observation) operating with standard commercial electronics and probes, we tested the instrument with three compounds representing typical pharmaceutical drugs. We compared results from two probes and shimstacks with different geometries (broadband fluorine observe (BBFO) with Bruker orthogonal shim system-3 (BOSS3) and Bruker quattro nucleus probe (QNP) with BOSS1 shims) testing standard one-dimensional (1D) NMR experiments including selective excitation experiments, and two-dimensional (2D) homonuclear and heteronuclear experiments for the purposes of evaluating the equipment for structure elucidation capabilities. In our initial study on cinacalcet HCl, only the 1D 1H experiment showed a loss of resolution when using the longer coiled BBFO probe with the BOSS3 shims compared to the shorter coiled QNP probe with BOSS1 shims. The selective excitation experiments using the cinacalcet HCl were successful. Our characterization of 1D (1H, 13C, 19F) and 2D (1H-1H and 1H-13C) NMR experiments for compounds I and II with the two probes and shimstacks indicated no significance differences. Overall, these results are satisfactory with the HTS magnet at the field of 9.4?T for the structural elucidation work of standard pharmaceutical compounds. This new technology has the advantage of being able to locate the HTS NMR magnet system in any chemistry or analytical laboratory where the samples are produced, facilitating rapid analysis with minor needs from the facilities and without cryogenic liquids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号