首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing temperature and decreasing loading rate degrade the plane strain initiation (K ICifrom theJ integral) and growth (tearing modulus,T R) fracture toughnesses of RS/PM 8009 (Al-8.5Fe-1.3V-1.7Si, wt pct).K ICidecreases with increasing temperature from 25 ‡C to 175 ‡C (33 to 15 MPa√m for an extrusion and 28 to 11 MPa√m for hot cross-rolled plate) and further declines to 10 MPaVm at 316 ‡C without a minimum.T Ris greater than zero at all temperatures and is minimized at 200 ‡C. A four order-of-magnitude decrease in loading rate, at 175 ‡C, results in a 2.5-fold decrease inK ICiand a 5-fold reduction inT R.K ICiandT Rare anisotropic for extruded 8009 but are isotropic for cross-rolled plate. Cross rolling does not improve the magnitude or adverse temperature dependence of toughness. Delamination occurs along oxide-decorated particle boundaries for extruded but not cross-rolled 8009. Delamination toughening plays no role in the temperature dependence ofK ICi, however,T Ris increased by this mechanism. Macroscopic work softening and flow localization do not occur for notch-root deformation; such uniaxial tensile phenomena may not be directly relevant to crack-tip fracture. Micromechanical modeling, employing temperature-dependent flow strength, modulus, and constrained fracture strain, reasonably predicts the temperature dependencies ofK ICiandT Rfor 8009. While E and σys decrease with increasing temperature for all aluminum alloys, the strain to nucleate crack-tip damage dominates the fracture toughness of 8009 and decreases with increasing temperature for a range of constraint. Damage mechanisms for this novel behavior are evaluated in Part II. Formerly Graduate Student Department of Materials Science and Engineering, University of Virginia  相似文献   

2.
This paper presents a study of dynamic fracture initiation behavior of 2124-T6 aluminum matrix composites containing 0, 5.2, and 13.2 vol pct SiC whiskers. In the experiment, an explosive charge is detonated to produce a tensile stress wave to initiate the fracture in a modified Kolsky bar (split Hopkinson bar). This stress wave loading provided a stress intensity rate, KI,, of about 2 × 106 MPa√m/s. The recorded data are then analyzed to calculate the critical dynamic stress intensity factor,K Id, of the composite, and the values obtained are compared with the corresponding quasi-static values. The test temperatures in this experiment ranged from −196 °C to 100°C, within which range the fracture initiation mode was found to be mostly ductile in nature. The micromechanical processes involved in void and microcrack formation were investigated using metallographic techniques. As a general trend, experimental results show a lower toughness as the volume fraction of the SiC whisker reinforcement increases. The results also show a higher toughness under dynamic than under static loading. These results are interpreted using a simple dynamic fracture initiation model based on the basic assumption that crack extension initiates at a certain critical strain developed over some microstructurally significant distance. This model enables us to correlate tensile properties and microstructural parameters, as, for instance, the interspacing of the SiC whiskers with the plane strain fracture toughness.  相似文献   

3.
The plane-strain initiation fracture toughness (K JICi ) and plane-stress crack growth resistance of two Al-Cu-Mg-Ag alloy sheets are characterized as a function of temperature by a J-integral method. For AA2519 +Mg+Ag, K JICi decreases from 32.5 MPa√m at 25 °C to 28.5 MPa√m at 175 °C, while K JICi for a lower Cu variant increases from 34.2 MPa√m at 25 °C to 36.0 MPa√m at 150 °C. Crack-tip damage in AA2519+Mg+Ag evolves by nucleation and growth of voids from large undissolved Al2Cu particles, but fracture resistance is controlled by void sheeting coalescence associated with dispersoids. Quantitative fractography, three-dimensional (3-D) reconstruction of fracture surfaces, and metallographic crack profiles indicate that void sheeting is retarded as temperature increases from 25 °C to 150°C, consistent with a rising fracture resistance. Primary microvoids nucleate from smaller constituent particles in the low Cu alloy, and fracture strain increases. A strain-controlled micromechanical model accurately predicts K JICi as a function of temperature, but includes a critical distance parameter (l*) that is not definable a priori. Nearly constant initiation toughness for AA2519+Mg+Ag is due to rising fracture strain with temperature, which balances the effects of decreasing flow strength, work hardening, and elastic modulus on the crack-tip strain distribution. Ambient temperature toughnesses of the low Cu variant are comparable to those of AA2519+Mg+Ag, despite increased fracture strain, because of reduced constituent spacing and l*.  相似文献   

4.
Subcritical crack growth and tensile ductility measurements have been made on a 12 Cr-1 Mo ferritic stainless steel at cathodic potentials in a 1 N H2SO4 solution at 25 °C. The tensile ductility was found to be a minimum at −600 mV (SCE) and both the subcritical crack growth behavior and tensile ductility were similar for material in the tempered (760 °C/2.5 h) or tempered-plus-segregated (540 °C/240 h) condition. A rising-load crack growth threshold of 20 MPa √m was measured and a rising-load fracture toughness of 110 MPa √m was determined from extrapolation of the stage III crack growth curve. A K-independent stage II was observed and a stage II crack growth rate of about 1 × 10−5 mm/s was measured. The fracture mode was a mixture of intergranular and quasi-cleavage for both heat treatments and for subcritical and tensile fracture tests. Impact fracture properties were independent of heat treatment and grain boundary composition with the fracture mode predominantly transgranular. The difference in the fracture mode for hydrogen-induced crack growth and dynamic crack growth was explained by a difference in the relationship between their stress profiles and the maximum grain boundary segregation distribution.  相似文献   

5.
Fracture toughness of the lean duplex stainless steel LDX 2101   总被引:1,自引:0,他引:1  
Fracture toughness testing was performed on the recently developed lean duplex stainless steel LDX 2101 (EN 1.4162, UNS S32101). The results were evaluated by master curve analysis, including deriving a reference temperature. The master curve approach, originally developed for ferritic steels, has been used successfully. The reference temperature corresponds to a fracture toughness of 100 MPa√m, which characterizes the onset of cleavage cracking at elastic or elastic-plastic instabilities. The reference temperature, T 0, was −112 °C and −92 °C for the base and weld materials, respectively. In addition, the fracture toughness is compared with impact toughness results. Complementary crack tip opening displacements (CTODs) have also been calculated. The toughness properties found in traditional duplex stainless steels (DSS) are generally good. The current study verifies a high fracture toughness for both base and weld materials and for the low alloyed grade LDX 2101. Even though the fracture toughness was somewhat lower than for duplex stainless steel 2205, it is still sufficiently high for most low-temperature applications.  相似文献   

6.
The environment-assisted cracking behavior of a Fe3Al intermetallic in an air moisture environment was studied. At room temperature, tensile ductility was found to be increased with strain rate, from 10.1 pct at 1×10−6 s−1 to 14.3 pct at 2 × 10−3 s−1. When tensile tests were done in heat-treated mineral oil on specimens that have been heated in the oil for 4 hours at 200°C, ductility was found to be recovered. These results suggest the existence of hydrogen embrittlement. Shear ligaments, which are ligament-like structures connected between microcracks, were observed on the tensile specimens. They undergo ductile fracture by shearing and enhance fracture toughness. This toughness enhancement (represented byJ l ) was estimated by a micromechanical model. The values of the unknown parameters, which are the average ligament length , the area fractionV l , and the work-to-fractureτ 1 γ 1, were obtained from scanning electron microscopy (SEM) observation. The total fracture toughnessK c andJ l were reduced toward a slower strain rate. The experimental fracture toughness,K Q , was found to be increased with strain rate, from 35 MPa at 2.54×10−5 mm·s−1 to 47 MPa at 2.54×10−2 mm·s−1. The fact that strain rate has a similar effect onK Q andK c verifies the importance of shear ligament in determining fracture toughness of the alloy. With the presence of hydrogen, length and work-to-fracture of the shear ligament were reduced. The toughening effect caused by shear ligament was reduced, and the alloy would behave in a brittle manner.  相似文献   

7.
An investigation was conducted into the effects of test temperature and loading rate on the initiation of plane strain fracture of an HY-100 steel. Fracture toughness tests were conducted using fatigue precracked round bars loaded in tension to produce a quasi-static stress intensity rate of ·K1 = 1 MPa√m/s and a dynamic rate of ·K1 = 2 × 106 MPa√m/s. Testing temperatures covered the range from -150 °C to 200 °C, which encompasses fracture initiation modes involving quasi-cleavage to fully ductile fracture. The results of toughness tests show that the lower-shelf values of fracture toughness were substantially independent of loading rate, while the dynamic values exceeded the quasi-static values by about 50 pct on the upper shelf. In analyzing these results, phenomenological fracture initiation models were adopted based on the requirement that, for fracture to occur, a critical strain or stress must be achieved over a critical distance. In separate tests, the observation of microfracture processes was investigated using fractography and anin situ scanning electron microscope (SEM) fracture technique. The layered ppearance of the fracture surfaces was found to be associated with a banded structure which generally contains many MnS inclusions, probably resulting in a reduction of the fracture toughness values.  相似文献   

8.
Tensile ductility of extrinsically toughened intermetallics   总被引:1,自引:0,他引:1  
A theoretical analysis based on crack instability is presented to elucidate factors effecting the tensile ductility of intermetallics that are toughened by extrinsic mechanisms and resistance-curve effects. The analytical results indicate that extrinsic-toughening mechanisms are ineffec-tive in imparting tensile ductility in brittle intermetallics. The plastic strain at the onset of un-stable fracture is generally controlled by the initiation toughness,K Ic, except for materials with a high-tearing modulus,T R.The consequence is that tensile ductility increases with the initiation toughness,K Ic, but is unrelated to theK value measured at the peak load or theT Rvalue for materials with low- to intermediate-tearing resistance (e.g., T R <18 forK Ic= 10 MPa√m). Application of the model to a two-phase TiAl alloy reveals good agreement between theory and experiment. This finding indicates that tensile ductility in brittle intermetallics can be imparted more effectively by intrinsic-toughening mechanisms than by extrinsic ones.  相似文献   

9.
In this work, the role of the microstructure in the stress sulfide cracking (SSC) resistance of an API X-80 steel was investigated by exposure of as-received and heat-treated specimens to a H2S-saturated aqueous National Association of Corrosion Engineers (NACE) solution. It was found that for similar corrosive environments and applied stress intensity factors of 30 to 46 MPa√m, crack growth in LEFM (linear elastic fracture mechanics) compact specimens is strongly influenced by heat treating. In the as-received alloy, crack growth in the direction normal to rolling was controlled by metal dissolution of the crack tip region in contact with the corrosive environment, with crack growth rates of the order of 1/W(da/dt)∼8.3×10−4 h−1. Alternatively, crack growth in the direction parallel to the rolling direction did not show metal dissolution, but instead hydrogen embrittlement along segregation bands. In this case, crack growth rates of the order of 1.2×10−3 h−1 were exhibited. In the martensitic condition, the rate of crack propagation was relatively fast (1/W(da/dt)∼4.5×10−2 h−1), indicating severe hydrogen embrittlement. Crack arrest events were found to occur in water-sprayed and quenched and tempered specimens, with threshold stress intensity values (K ISSC) of 26 and 32 MPa√m, respectively. Apparently, in the water-sprayed condition, numerous microcracks developed in the crack tip plastic zone. Crack growth occurred by linking of microcracks, which were able to reach the main crack tip. In particular, preferential microcrack growth occurred across carbide regions, but their growth was severely limited in the ferritic matrix. Quenching and tempering (Q&T) resulted in a tempered martensite microstructure characterized by fine distribution carbides, most of which were cementite. In this case, the crack path continually shifted to follow the ferrite interlath boundaries, which contained mostly fine cementite precipitates. As a result, the crack was tortuous with numerous bifurcations along ferrite grain boundaries. Most of the tests were carried out in NaCl-free NACE solutions; the only exception was the as-received condition where 5 wt pct NaCl was added to the sour environment. In this case, crack growth did not occur after exposing the specimen to the salt-free NACE solution for 30 days, but addition of 5 pct NaCl promoted crack propagation.  相似文献   

10.
The ductile-brittle transition temperature (DBTT) of 9Cr-1Mo steel was characterized by an RT NDT-based K IR curve approach and a reference temperature (T 0)-based master curve (MC) approach. The MC was developed at a dynamic loading condition (loading rate of 5.12 m/s), using precracked Charpy V-notch (PCVN) specimens, and the reference temperature was termed T 0 dy . The RT NDT and T 0 dy were determined to be −25 °C and −52 °C, respectively. The T 0 dy was also estimated from instrumented CVN tests, using a modified Schindler procedure to evaluate K Jd ; the result shows close agreement with that obtained from the PCVN tests. The ASME K IR -curve approach proves to be too conservative compared to the obtained trend of the fracture toughness with temperature. The cleavage fracture stress, σ* f , estimated from the critical length, l*, shows good agreement with that estimated from the load-temperature diagram (2400 to 2450 MPa), which was constructed from the CVN test results. The crack initiation mechanism has been identified as decohesion of the particle-matrix interface, rather than as the fracture of the particles.  相似文献   

11.
Constant-amplitude high-cycle fatigue tests (σmax=133 MPa, σmaxy=0.55, and R=0.1) were conducted on cylindrical samples machined from a cast A356-T6 aluminum plate: The fracture surface of the sample with the smallest fatigue-crack nucleating defect was examined using a scanning electron microscope (SEM). For low crack-tip driving forces (fatigue-crack growth rates of da/dN<1 × 10−7 m/cycle), we discovered that a small semicircular surface fatigue crack propagated primarily through the Al-1 pct Si dendrite cells. The silicon particles in the eutectic remained intact and served as barriers at low fatigue-crack propagation rates. When the semicircular fatigue crack inevitably crossed the three-dimensional Al-Si eutectic network, it propagated primarily along the interface between the silicon particles and the Al-1 pct Si matrix. Furthermore, nearly all of the silicon particles were progressively debonded by the fatigue cracks propagating at low rates, with the exception of elongated particles with a major axis perpendicular to the crack plane, which were fractured. As the fatigue crack grew with a high crack-tip driving force (fatigue-crack growth rates of da/dN>1 × 10−6 m/cycle), silicon particles ahead of the crack tip were fractured, and the crack subsequently propagated through the weakest distribution of prefractured particles in the Al-Si eutectic. Only small rounded silicon particles were observed to debond while the fatigue crack grew at high rates. Using fracture-surface markings and fracture mechanics, a macroscopic measure of the maximum critical driving force between particle debonding vs fracture during fatigue-crack growth was calculated to be approximately K max tr ≈6.0 MPa √m for the present cast A356 alloy.  相似文献   

12.
A fracture mechanics approach was used to determine the plane strain fracture toughness (K IC) of a mechanically alloyed Al-9Ti 20 vol pct cobalt sol-gel-coated SiC particle-reinforced composite. Processing defects consisting of clumped SiC particulate, bonded by the sol-gel, initiated failure in tensile tests. The defects were measured and the fracture toughness was calculated using the Irwin relation. The value ofK IC for the as-received material was determined to be equal to 4.7 MPa·m1/2 at room temperature. Annealing the material for 120 hours and 400 hours at 500 °C increased the fracture toughness. This can be attributed to coarsening of an Al3Ti strengthening phase. Tensile tests conducted at 200 °C show thatK IC decreases at that temperature for each annealing condition. The sensitivity to the presence of the defects is greatest for samples annealed at 500 °C for 120 hours. The effect of the defects on the failure mechanism of the composite material as a function of temperature was determined. At room temperature, the Co/SiC processing defects provide low-energy paths for crack propagation; at 500 °C, the defects serve as void nucleation sites.  相似文献   

13.
This study investigates fracture resistance of a sintered steel in the temperature range from 25 °C to 300 °C. The temperature-dependent fracture resistance is experimentally determined by fracture toughness tests. The fracture toughness, K IC , decreases from 28.8 at room temperature to 23 MPa√m at 300 °C. The finite element analysis shows an insight of the rationale of using K IC as the parameter to characterize the fracture resistance of porous sintered steel in which the stress intensity (K) field has been severely distorted at the porous crack tip. The analysis indicates that crack onset of sintered steel is controlled by a critical stress mechanism.  相似文献   

14.
Fatigue crack propagation ratesda/dN in binary Al alloys with 3.6 wt pct Cu and 6.3 wt pct Cu and commercial 2024 aged at 21°C were compared with 99.95+ wt pct aluminum. Omitting an anomalous region at lowΔK, the extrapolated rates for “pure” aluminum are more than 100 times greater than those in the three alloys at the same ΔK. The data for the alloys fit into a single scatter band of a factor of three. It was suggested thatda/dN varies inversely with the square of the strength of the alloy but that another parameter related to the fatigue crack propagation energy per unit area is also important. Theda/dN vs ΔK curves were determined for 3.6 wt pct Cu single crystals aged seven days at 21°C which containGP zones and two and seven days at 160°C which contain mixtures ofθ′ andθ′’. No systematic variation of (da/dN Δ with crystallographic orientation was discerned, but the naturally aged specimen had a strong orientation dependence on crack initiation. At low ΔK 21°C aged specimens gave the lowestda/dN while at high ΔK the warm aged specimens gave the lower values ofda/dN. Measurement ofda/dN vs ΔK curves were conducted on specimens of 3.6 wt pct Cu with 1 mm equiaxed grains aged for various times at 130°C, 160°C, and 190°C. All warm aged specimens experienced brittle intergranular fracture at sufficiently high ΔK. The transition ΔK where intergranular fracture first appears is inversely proportional to the aging temperature. The change of fracture mode from intra to intergranular occurs gradually over a broad range of ΔK which shifts to lower ΔK with increase in aging temperature. This research was supportd by U.S. Air Force Office of Scientific Research, Office of Aerospace REsearch, Grant No. AF-AFOSR-73-2431.  相似文献   

15.
An investigation was conducted into the effects of temperature, loading rate, and various micro-structural parameters on the initiation of plane strain fracture of a plain carbon AISI 1020 steel. Ferrite and prior austenite grain sizes were chosen as the principal microstructural features to be in-vestigated. The microstructural variations were accomplished by changing the austenitizing tempera-ture and by altering the cooling rate during normalization. Fracture toughness tests were conducted using precracked notched round bars loaded in tension to produce two stress intensity rates,viz.,K 1 = 1 MPa √m s-1 andK 1 = 2 × 106 MPa √m s-1. In addition, Charpy impact tests along with quasistatic and high rate plasticity tests were conducted. The plasticity tests were done in torsion at shear strain rates of . Testing temperatures covered the range from -150 °C to 150 °C which encompassed fracture initiation modes involving transgranular cleavage to fully ductile fracture. Micromechanical processes involved in void and cleavage micro-crack formation were identified and quantified. For these purposes notched round tensile tests and subsequent metallographic observations along with TEM and SEM observations of the plane strain fracture toughness specimens were performed. The experimental results and quantitative micro-modeling using simple fracture models provide a means of correlating both quasistatic and dynamic fracture toughness with microstructures.  相似文献   

16.
In this report, hydrogen-assisted cracking (HAC) behavior of low-alloy steel was evaluated using a constant elongation rate tensile test, and the temperature and crack tip strain rate effects were observed. It was found that temperature dependence of the threshold condition (C σm c ) of HAC above about 100 °C followed the relation C σm c = Kexp(−41,300/Rr) whereK is a constant andT is absolute temperature. The relationship between HAC growth rate and crack tip strain rate was established as almost linear, irrespective of temperature and hydrogen concentration at the crack tip. Hydrogen heat release tests were also performed. From these tests, formation and growth of microcracks which are trap sites of hydrogen were thought to be the mechanism of HAC in the steel. From this mechanism, HAC behavior of the low-alloy steel could be qualitatively explained.  相似文献   

17.
In the present study, the crack opening displacement (COD) tests of specimens of C-Mn base and weld steel were carried out in the ductile-brittle transition temperature region. The majority of the specimens were fractured and others were unloaded prior to fracture after ductile fracture initiated and extended. The cavities and cleavage microcracks located in the vicinities of tips of fibrous cracks of the unloaded specimens were observed in detail. The finite element method (FEM) calculations of the stress and strain distribution ahead of the tip of an extending fibrous crack were completed. The mechanism of the ductile-to-brittle fracture transition was further investigated. It was revealed that in the ductile-brittle transition temperature region, the ductile fracture process was independent of temperature. The ductile-to-brittle fracture transition was triggered by initiating a catastrophic extension of a cleavage crack ahead of the fibrous crack tip, which occurred in a condition satisfying a combined criterion composed of three items, i.e., ε p ≥ ε pc for initiating a crack nucleus; σ m √σ ≥ T c for preventing the crack nucleus from blunting; and σ yy ≥ σ f for propagating the crack nucleus. For a specimen in which a fibrous crack occurred and propagated, the critical event for initiating a brittle cleavage fracture was the propagation of a ferrite grain-sized crack into neighboring grains. With extension of a fibrous crack, the behavior of the ductile-to-brittle fracture transition could be analyzed by the effect of the size of an “active zone” on the initiation of the brittle cleavage fracture.  相似文献   

18.
The crack initiation toughness (K c ) and crack arrest toughness (K a ) of AISI 4140 and AISI 4340 steel were measured over a range of yield strengths from 965 to 1240 MPa, and a range of test temperatures from -53 to +74°C. Emphasis was placed onK a testing since these values are thought to represent the minimum toughness of the steel as a function of loading rate. At the same yield strengths and test temperatures,K a for the AISI 4340 was about twice as high as it was for the AISI 4140. In addition, theK a values showed a more pronounced transition temperature than theK c values, when the data were plotted as a function of test temperature. The transition appeared to be associated with a change in fracture mechanism from cleavage to dimpled rupture as the test temperature was increased. The occurrence of a “pop-in” behavior at supertransition temperatures has not been found in lower strength steels, and its evaluation in these high strength steels was possible only because they are not especially tough at their supertransition temperatures. There is an upper toughness limit at which pop-in will not occur, and this was found for the AISI 4340 steel when it was tempered to its lowest yield strength (965 MPa). All the crack arrest data were identified as plane strain values, while only about one-half of the initiation values could be classified this way.  相似文献   

19.
Phase transformations and the kinetics of domain growth were studied in near stoichiometric Ti3Al and in a similar alloy containing about 5 at. pct Nb (Cb). The alloys were quenched from the β and from the α+ β fields and were subsequently annealed in the α2 field to study the ordering transformation. The critical temperature (T c) for ordering was found to be between 1125 and 1150° for both alloys. When quenched from aboveT c the microstructure of the stoichiometric compound contained massive martensite with small antiphase domains of average size 8 × 10 μm. On annealing the quenched structures in the range 700 to 1000°, domain coalescence occurred, the domains growing approximately as the square root of the annealing time. The activation energy for the domain growth process was found to be 64.6 ± 6 Kcal/mole (2.68 ± 0.25 × 105 J/mole). On quenching the alloy containing Nb the β transforms to a fine acicular martensite. On annealing, antiphase domain coalescence within the martensite plates and the simultaneous recrystallization of the martensite resulted in a fine subgrain structure even after annealing at 900° for up to 3 h. The mechanical properties and the fracture modes of the two alloys tested at 700° were correlated with the observed microstructural changes. The effects of Nb in this alloy are to slow the domain growth kinetics, to reduce the planarity of slip, and to increase nonbasal slip activity. Formerly NRC Research Associate in the Air Force Materials Laboratory, Wright-Patterson Air Force Base, OH  相似文献   

20.
Fatigue crack growth rate behavior in CORONA 5, an alloy developed for applications requiring high fracture toughness, has been examined for eight material conditions. These conditions were designed to give differences in microstructure, strength level (825 to 1100 MPa [120 to 160 ksi]), and oxygen content (0.100 to 0.174 wt pct), in such a manner that the separate effects of these variables could be defined. For all eight conditions, fatigue crack growth rates (da/dN) are virtually indistinguishable over the full spectrum of stress-intensity range (ΔK) examined,viz., 8 to 40 MPa√m (7 to 36 ksi√in). Concomitantly, it is noted that over the sizable solution annealing range studied (830° to 915 °C [1525° to 1675 °F]), the primary α-phase morphology was substantially invariant. Eachda/dN curve exhibits a bilinear form with a transition point (ΔKT) between 16 and 19 MPa√m (15 and 17 ksi√in). A change in microfractographic appearance occurs at ΔKT, as extensive secondary cracking along α/β interfaces is observed at all hypertransitional levels ofAK, but not for AK < ΔKT. For each material condition, the mean length of primary α platelets is approximately the same as the cyclic plastic zone size at ΔKT. Accordingly, locations ofAKT (and their similarity for the different material conditions) are rationalized in conformance with a cyclic plastic zone model of fatigue crack growth. Finally, the difference in behavior of CORONA 5, as compared to conventional α/β alloys such as Ti-6A1-4V, is rationalized in terms of crack path behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号