首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this laboratory study, a sandy loam soil saturated with phenol solution was treated by in-situ electrokinetics-Fenton process incorporated with a permeable reactive wall of scrap iron powder (SIP). The soil was contaminated and saturated with aqueous phenol solution of 90-115 mg/kg in concentration. It was then placed in a soil cell. The soil cell was assembled with an anode reservoir and a cathode reservoir at its ends. A bed of SIP (1.05-32.69 g) was inserted in the soil cell at a distance of 5 cm from the anode reservoir compartment. For the test runs, 0.3% H(2)O(2) was used as the anode reservoir fluid, whereas de-ionized water was used as the cathode reservoir fluid. An electric gradient of 1 V/cm was applied to enhance the saturated flow in the soil cell for a period of 10 days. Experimental results have shown that the electroosmotic (EO) flow quantity decreased as the amount of SIP increased. This phenomenon was in good agreement with the results showing the value of EO permeability increased with a decreasing amount of SIP. Results also showed that throughout the test period the cumulative, consumed mass of H(2)O(2) in the anode reservoir increased as the amount of SIP decreased. On the other hand, the cumulative, increased mass of phenol in the cathode reservoir was found to increase with a decreasing amount of SIP. Meanwhile, the residual phenol concentration in the soil cell was found to decrease with a decreasing amount of SIP. When 1.05 g scrap iron powder was used, an overall removal and destruction efficiency of phenol of 99.7% was obtained. Therefore, it is evident that an in-situ combined technology of electrokinetic remediation and Fenton-like process is capable of simultaneously removing and degrading the phenol in a saturated flow.  相似文献   

2.
The feasibility of anolyte conditioning on electrokinetic remediation of fluorine-contaminated soil was investigated with a field soil. The initial concentration of fluorine, pH and water content in the soil were 414mg/kg, 8.91 and 15%, respectively. Because the extraction of fluorine generally increased with the soil pH, the pH of the anode compartment was controlled by circulating strong alkaline solution to enhance the extraction of fluorine during electrokinetic remediation. The removal of fluorine increased with the concentration of the alkaline solution and applied current density and fluorine removed up to 75.6% within 14 days. Additionally, anolyte conditioning sharply increased the electro-osmotic flow, which enhanced the removal of fluorine in this study. In many respects, anolyte conditioning in electrokinetic remediation of fluorine-contaminated soil will be a promising technology.  相似文献   

3.
Ex situ electrokinetic (EK) bioremediation of a laboratory-prepared pentadecane-contaminated kaolinite was carried out. Extraneous bacteria and ionic nutrients were continuously supplied to the soil specimen by a new electrolyte circulation method, which controlled electrical pH change of electrolyte solution to keep bacterial activity. During the EK bioremediation the anode region showed the highest colony forming unit (CFU) due to electrical attraction between anode and bacteria. Simultaneous increases of CFU and uniform pentadecane removal in most soil regions demonstrated that electro-osmosis as well as electrophoresis affected the bacterial transport in soil. At 3.13 mA/cm2, increase in soil temperature to above 45 degrees C inhibited bacterial activity, which caused the decrease of removal efficiency. The removal amount of pentadecane increased with initial pentadecane concentration at the same current densities (0.63 and 1.88 mA/cm2) because of the increased amount of weakly bound pentadecane onto the soil surface. The highest removal efficiency (77.6%) was obtained at 0.63 mA/cm2 for 1000 mg/kg pentadecane after 14 days. Consequently, the present methods of EK bioremediation demonstrated superiority over the conventional bioremediation, which had inherent demerits of slow degradation and low removal efficiency.  相似文献   

4.
In situ bioremediation is an attractive and often cost-effective technology for the cleanup of organics-contaminated sites, but it often requires extended treatment time under field conditions. This study explored the feasibility of using non-uniform electrokinetic transport processes to enhance in situ bioremediation. A bench-scale non-uniform electrokinetic system with periodic polarity-reversal was developed for this purpose, and tested by using a sandy loam spiked with phenol as a model organic pollutant. The results demonstrated that non-uniform electrokinetic processes could accelerate the movement and in situ biodegradation of phenol in the soil. Bidirectional operation enhanced the phenol biodegradation more effectively than unidirectional operation. At the same time, a smaller polarity-reversing interval induced a higher and more uniform removal of phenol from the soil. The results also showed that reversing the polarity of electric field applied could maintain the soil pH and moisture, but it increased the consumption of electricity.  相似文献   

5.
The electroremediation experiments were conducted on artificially polluted soils by introducing a single metallic contaminant (Pb, Zn and Cu) and multiple metallic contaminants (Pb+Zn+Cu). Based on sequential extraction results, it was observed that the removal efficiencies of lead, zinc and copper vary depending on types of contamination. When the soil was contaminated only by lead, the removal efficiency was found to be 48%. However, the removal efficiency of lead decreased to 32% when the soil was contaminated by the combination of lead, zinc and copper. Similar results were observed for zinc and copper. The corresponding removal efficiency values for zinc and copper were 92% and 37%, and 34% and 31%, respectively. Effects of electrode geometry on the removal efficiency of metals were investigated by constructing a multiple anode arrangement. In this arrangement, the electrokinetic unit consists of three cylinders, which lie one inside the other, and the soil was placed in the middle cylinder. The central cylinder was the cathode well and the outer cylinder was the anode well, where eight identical anode electrodes were placed in octagonal with respect to the cathode electrode. By using this electrode arrangement in removal of metals from the soil contaminated with the combination of three metals (Pb+Zn+Cu), the removal efficiencies of lead, zinc and copper were found to be 29%, 18% and 18%, respectively. As it can be seen, these numerical values are much lower than the values that were obtained when the traditional two-plate electrode arrangement used in the electroremediation experiments (32%, 37% and 31%).  相似文献   

6.
Electrochemical removal of phenol from oil refinery wastewater   总被引:3,自引:0,他引:3  
This study explores the possibility of using electrocoagulation to remove phenol from oil refinery waste effluent using a cell with horizontally oriented aluminum cathode and a horizontal aluminum screen anode. The removal of phenol was investigated in terms of various parameters namely: pH, operating time, current density, initial phenol concentration and addition of NaCl. Removal of phenol during electrocoagulation was due to combined effect of sweep coagulation and adsorption. The results showed that, at high current density and solution pH 7, remarkable removal of 97% of phenol after 2h can be achieved. The rate of electrocoagulation was observed to increase as the phenol concentration decreases; the maximum removal rate was attained at 30 mg L(-1) phenol concentration. For a given current density using an array of closely packed Al screens as anode was found to be more effective than single screen anode, the percentage phenol removal was found to increase with increasing the number of screens per array. After 2h of electrocoagulation, 94.5% of initial phenol concentration was removed from the petroleum refinery wastewater. Energy consumption and aluminum Electrode consumption were calculated per gram of phenol removed. The present study shows that, electrocoagulation of phenol using aluminum electrodes is a promising process.  相似文献   

7.
To simultaneously avoid a decrease of electro-osmotic flow by hydrogen ions and to increase heavy metal precipitation due to hydroxide ions, simulated electrokinetic remediation was conducted in saturated kaolinite specimens loaded with lead(II) using an electrolyte circulation method to control electrolyte pH. At an electrolyte circulation rate of 1.1 ml/min, it was possible to increase the anolyte pH from 2 to 4 and decrease the catholyte pH from 12 to 8. Using electrolyte circulation, it was observed that the rate of decrease of clay pH due to the change of electrolyte pH was reduced. As a result, the operable period was extended and the removal efficiency for lead(II) was also increased. It was observed that most of the effluent lead(II) from the cathode compartment was electroplated onto the cathode and that residual effluent lead(II) did not precipitate onto, or adsorb to, the clay at the anode compartment during circulation. Therefore, there was no need to treat the electrolyte because there was virtually no effluent from the cathode compartment in the circulation system. It was also found that the electrolyte volume required to sustain the electrolytic reaction was sufficient for the whole electrokinetic remediation process.  相似文献   

8.
The electrochemical oxidation of anionic surfactants (sodium dodecyl benzene sulfonate, DBS) contained in simulated wastewater treated by three-dimensional electrode system with combined modified kaolin served as packed bed particle electrodes and Ti/Co/SnO(2)-Sb(2)O(3) anode was studied, the chemical oxygen demand (COD) removal of pollutants in the solutions was also investigated. The results showed that the three-dimensional electrodes in combined process could effectively decompose anionic surfactants. The COD removal efficiency can reach 86%, much higher than that of Ti/Co/SnO(2)-Sb(2)O(3) electrodes used singly or modified kaolin employed singly (graphite as anode and cathode) on the same condition of pH 3 and 38.1 mA/cm(2) current density. The current efficiency and kinetic constant were calculated and energy consumption was studied. At the same time the influence of pH and current density on COD removal efficiency with combined three-dimensional electrodes was also investigated, respectively. The optimal initial pH value of degradation is 3 (acid condition), and a minor COD removal increase follows higher current density.  相似文献   

9.
Electrokinetic remediation methods for removal of heavy metals from polluted soils have been subjected for quite intense research during the past years since these methods are well suitable for fine-grained soils where other remediation methods fail. Electrodialytic remediation is an electrokinetic remediation method which is based on applying an electric dc field and the use of ion exchange membranes that ensures the main transport of heavy metals to be out of the pollutes soil. An experimental investigation was made with electrodialytic removal of Cu from spiked kaolinite, spiked soil and industrially polluted soil under the same operational conditions (constant current density 0.2 mA/cm(2) and duration 28 days). The results of the present paper show that caution must be taken when generalising results obtained in spiked kaolinite to remediation of industrially polluted soils, as it was shown that the removal rate was higher in kaolinite than in both spiked soil and industrial polluted soil. The duration of spiking was found to be an important factor too, when attempting to relate remediation of spiked soil or kaolinite to remediation of industrially polluted soils. Spiking for 2 days was too short. However, spiking for 30 days resulted in a pattern that was more similar to that of industrially polluted soils with similar compositions both regarding sequential extraction and electrodialytic remediation result, though the remediation still progressed slightly faster in the spiked soil. Generalisation of remediation results to a variety of soil types must on the other hand be done with caution since the remediation results of different industrially polluted soils were very different. In one soil a total of 76% Cu was removed and in another soil no Cu was removed only redistributed within the soil. The factor with the highest influence on removal success was soil pH, which must be low in order to mobilize Cu, and thus the buffering capacity against acidification was the key soil characteristics determining the Cu removal rate.  相似文献   

10.
While the feasibility of using electrokinetics to decontaminate soils has been studied by several authors, the effects of soil composition on the efficiency of this method of decontamination has yet to be fully studied. This study focuses its attention on the effect of “calcite or carbonate” (CaCO3) on removal efficiency in electrokinetic soil remediation. Bench scale experiments were conducted on two soils: kaolinite and natural-soil of a landfill in Hamedan, Iran. Prescribed quantities of carbonates were mixed with these soils which were subsequently contaminated with zinc nitrate. After that, electrokinetic experiments were conducted to determine the efficiency of electrokinetic remediation. The results showed that an increase in the quantity of carbonate caused a noticeable increase on the contaminant retention of soil and on the resistance of soil to the contaminant removal by electrokinetic method. Because the presence of carbonates in the soil increases its buffering capacity, acidification is reduced, resulting in a decrease in the rate of heavy metal removed from the contaminant soil. This conclusion was validated by the evaluation of efficiency of electrokinetic method on a soil sample from the liner of a waste disposal site, with 28% carbonates.  相似文献   

11.
The main objective of this study is to evaluate the combination of electrokinetic remediation and soil washing technology in order to remove cadmium from contaminated soil. This paper presents the results of an experimental research undertaken to evaluate different washing and purging solutions to enhance the removal of cadmium from a real contaminated soil during electrokinetic remediation. Two different experimental modules were applied in the laboratory. Soil was saturated with tap water, while acetic and hydrochloric acids, as well as ethylenediaminetetraacetic acid (EDTA) were used as purging solutions in the first module. Results show that there was a decrease of cadmium concentration near anode, but a significant increase in the middle of the cell, due to the increasing pH. Citric, nitric and acetic acids were used for soil washing and purging solutions in the second module. In this case, an 85% reduction of cadmium concentration was achieved. Therefore, results indicate that soil pH and washing solutions are the most important factors in governing the dissolution and/or desorption of Cd in a soil system under electrical fields.  相似文献   

12.
Electrokinetics (EK) is a technique for soil remediation. However, the acid produced due to the water electrolysis at the anode will cause soil acidification, which may destroy the soil constituents, and reduce contaminant removal efficiency. The formation of a base front produced at the cathode will result in the precipitation of metal hydroxides and a concomitant clogging of pore space. In this study, a circulation-enhanced EK (CEEK) system is designed to neutralize the pH of the working solution and soils for avoiding the above problems. Experiments are conducted by controlling different voltage gradients, electrode materials, and electrode emplacement, respectively. According to the experimental results, the CEEK system could effectively stabilize the current and the pH of processing solution at a neutral range. The strength of voltage gradient is proportional to the current magnitude of the CEEK system. The graphite electrode for CEEK is the better choice than the metal electrodes because graphite electrodes can achieve the lower electricity consumption. The electrode installed in the reservoir without attachment on soils can decrease the pH deviation of the soil matrix.  相似文献   

13.
This paper presents the results of a study on the electrokinetic treatment of kaolinite and humic acid kaolinite complexes spiked with 2,6-dichlorophenol or 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron). In particular, the attention was paid to the interaction between solid surface and dissolved organics: the effects of contaminant sorption as well as the physicochemical reactions on the efficiency of electrokinetic remediation were investigated. Using a 3V/cm voltage gradient, approximately 90% of diuron was removed from kaolinite after one water pore volume was collected in the cathode reservoir, but much lower efficiency was obtained in the electrokinetic removal of this compound from humic acid-coated kaolinite. The results also showed that partial degradation of the contaminant occurred during electrokinetic treatment of kaolinite clay spiked with 2,6-dichlorophenol: the contamination in the clay could be remediated by the combination of electrokinetic extraction and electrochemical reactions.  相似文献   

14.
Electroosmotic flow behaviour of metal contaminated expansive soil   总被引:1,自引:0,他引:1  
It is important to study the flow behaviour through soil during electrokinetic extraction of contaminants to understand their removal mechanism. The flow through the expansive soil containing montmorillonite is monitored during laboratory electrokinetic extraction of heavy metal contaminants. The permeability of soil, which increases due to the presence of contaminants, is further enhanced during electrokinetic extraction of contaminants due to osmotic permeability. The variations in flow rates through the soil while the extracting fluid is changed to dilute acetic acid (used to control the increase of pH) and EDTA solution (used to desorb the metal ions from soil) are studied. The trends of removal of contaminants vis-a-vis the changes in the flow through the soil during different phases of electrokinetic extraction are established. Chromium ions are removed by flushing of water through the soil and increased osmotic flow is beneficial. Removal of iron ions is enhanced by induced osmotic flow and desorption of ions by electrokinetic processes.  相似文献   

15.
The transport of phenol through a flat sheet supported liquid membrane (SLM) containing vegetable oil as liquid membrane (LM) has been investigated. The permeation of phenol was investigated by varying the experimental conditions like, selection of LM, support material, feed phase pH, stripping solution concentration, stirring speed and different initial concentration of phenol. It has been found that, each LM investigated in the present study shows the effective removal of phenol using polytetrafluoroethylene (PTFE) membrane and PP supported membrane as a solid support. Among the various oils tested, palm oil has chosen to be the best LM with permeability of 8.5x10(-6) m/s in acidic feed of pH 2.0 with 0.2 M sodium hydroxide as effective stripping agent. After 6 h all the phenol from the feed side gets transported to strip solution with an initial concentration of 100 mg/L. A concentration factor of five has been achieved in the present investigation easily with 0.2 M sodium hydroxide as stripping reagent. After 10 transport studies with one impregnation of LM, the LM showed no significant loss in the transport rate with average permeability of 7.9x10(-6) m/s with initial concentration 100 mg/L. Further study has also been attempted with cresols to explore the possibility of applying this to industrial wastewater under the optimized conditions for phenol. After 14 h of the transport studies in the phenol-formaldehyde industry wastewater, phenolic concentration in the feed solution was found to be below detectable level (1x10(-2) mg/L). For wood processing industry wastewater the transport takes place at the initial permeability of 7.1x10(-5) m/s. Thus it has been demonstrated the use of renewable, cheap, non toxic, naturally occurring vegetable oils as a novel, green liquid membrane for the recovery of phenol from aqueous solution in SLM, which has never been employed before in liquid membrane techniques.  相似文献   

16.
In situ bioremediation is a safe and cost-effective technology for the cleanup of organic-contaminated soil, but its remediation rate is usually very slow, which results primarily from limited mass transfer of pollutants to the degrading bacteria in soil media. This study investigated the feasibility of adopting 2D non-uniform electric field to enhance in situ bioremediation process by promoting the mass transfer of organics to degrading bacteria under in situ conditions. For this purpose, a 2D non-uniform electrokinetic system was designed and tested at bench-scale with a sandy loam as the model soil and 2,4-dichlorophenol (2,4-DCP) as the model organic pollutant at two common operation modes (bidirectional and rotational). Periodically, the electric field reverses its direction at bidirectional mode and revolves a given angle at rotational mode. The results demonstrated that the non-uniform electric field could effectively stimulate the desorption and the movement of 2,4-DCP in the soil. The 2,4-DCP was mobilized through soil media towards the anode at a rate of about 1.0 cmd(-1)V(-1). The results also showed that in situ biodegradation of 2,4-DCP in the soil was greatly enhanced by the applied 2D electric field upon operational mode. At the bidirectional mode, an average 2,4-DCP removal of 73.4% was achieved in 15 days, and the in situ biodegradation of 2,4-DCP was increased by about three times as compared with that uncoupled with electric field, whereas, 34.8% of 2,4-DCP was removed on average in the same time period at the rotational mode. In terms of maintaining remediation uniformity in soil, the rotational operation remarkably excelled the bidirectional operation. In the hexagonal treatment area, the 2,4-DCP removal efficiency adversely increase with the distance to the central electrode at the bidirectional mode, while the rotational mode generated almost uniform removal in soil bed.  相似文献   

17.
The electrochemical oxidation of phenol in synthetic wastewater and paper mill wastewater catalyzed by metal ion supported on cation exchange resin in suspended bed electrolytic reactor with graphite electrode has been investigated. The catalyst was characterized by SEM and XPS spectra and the effects of pH, the different metal ion and NaCl on the efficiency of the electrochemical oxidation phenol process were also studied. It was found that the catalyst containing Fe(3+) had the highest electrochemical catalytic activity for the electrochemical oxidation of phenol. When the initial concentration of phenol was 200 ppm, up to 90% chemical oxygen demand (COD) removal was obtained in 10 min. When the catalyst containing Fe(3+) was used to the paper mill wastewater, it still showed high efficiency. The COD removal could get to 75% in 60 min.  相似文献   

18.
Effects of sodium hypochlorite (NaClO), applied as an oxidant in catholyte, and high pH buffer solution on soil Cr removal and the functional diversity of soil microbial community during enhanced electrokinetic treatments of a chromium (Cr) contaminated red soil are evaluated. Using pH control system to maintain high alkalinity of soil together with the use of NaClO increased the electrical conductivities of soil pore liquid and electroosmotic flux compared with the control (Exp-01). The pH control and NaClO improved the removal of Cr(VI) and total Cr from the soil. The highest removal percentages of soil Cr(VI) and total Cr were 96 and 72%, respectively, in Exp-04 when the pH value of the anolyte was controlled at 10 and NaClO was added in the catholyte. The alkaline soil environment and introduction of NaClO in the soil enhanced the desorption of Cr(VI) from the soil and promoted Cr(III) oxidation to mobile Cr(VI), respectively. However, the elevated pH and introduction of NaClO in the soil, which are necessary for improving the removal efficiency of soil Cr, resulted in a significantly adverse impact on the functional diversity of soil microbial community. It suggests that to assess the negative impact of extreme conditions for enhancing the extraction efficiencies of Cr on the soil properties and function is necessary.  相似文献   

19.
The removal of phenol and o-cresol from water by a hybrid process of clay adsorption and ultrafiltration (clay-UF) was studied. Batch adsorption equilibrium experiments showed that the amount of adsorption for phenol and o-cresol decreased in the order kaolin>montmorillonite at an equilibrium pH (pH(e)) of 9.1. The clay-UF experiments were performed as a function of clay dose, solution pH, and transmembrane pressure. The role of pH in clay-UF process mainly depended on the acid-base nature of phenols and clays, and the charge of UF membrane. The rejection of phenol increased with increasing pH, and had a maximum at pH(e)=8.2 with kaolin but at pH(e)=9.1 with montmorillonite. The rejection of o-cresol also increased with increasing pH, and had a maximum at pH(e)=9.2 with kaolin but at pH(e)=10.2 with montmorillonite. Such differences between solute rejections depended on the pK(a) of the solutes, zeta potential of the clays, and surface charge of the membrane. The amount of soluble organics adsorbed onto the surface of membrane was negligible and the flux slightly decreased with increasing transmembrane pressure.  相似文献   

20.
In this work, a novel electrode of titanium substrate coated with mixed metal oxides of SnO(2), Sb(2)O(3), Nb(2)O(5) and PbO(2) was successfully prepared using thermal decomposition and electrodeposition. The surface morphology and the structure of the prepared thin film were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD), respectively. Experimental results showed that the structure of the prepared electrode might be described as a Ti/SnO(2)-Sb(2)O(3)-Nb(2)O(5)/PbO(2) thin film and its surface was mainly comprised pyramidal-shape beta-PbO(2) crystals. The modified electrode had higher oxygen evolution potential than that of other PbO(2) modified electrodes. Electrocatalytic oxidation of phenol in aqueous solution was studied to evaluate the potential applications of this electrode in environmental science. The phenol removal efficiency in an artificial wastewater containing 0.50g/L phenol could reach 78.6% at 20 degrees C and pH 7.0 with an applied electricity density of 20mA/cm(2) and treatment time of 120min. When 21.3g/L chloride was added to this wastewater, the removal efficiency could reach to 97.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号