首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研究了不同含量C对镍基单晶高温合金DD90凝固组织的影响。结果表明:随着C含量的增加,一次枝晶间距逐渐增大,凝固范围逐步扩大。随着C含量的增加,合金中碳化物数量逐渐增加。碳化物形貌从块状变为汉字体状,最后连接成复杂的骨架状。随着C含量的增加,γ/γ′共晶体积分数减少,粗大的初生相γ’减少。C的添加增大了Al的偏析,减弱了Re、Mo、W的偏析。  相似文献   

2.
采用选晶法在真空定向凝固炉中,制备了C含量分别为0.019%、0.048%、0.074%和0.094%的单晶高温合金,合金表面吹沙后分别在1 250、1 300℃进行真空热处理,研究不同C含量对单晶高温合金再结晶的影响。结果表明:随着合金中C含量升高,碳化物含量增多,其形态由块状转变为骨架状、发达骨架状;随着C含量增加,合金再结晶层深度无明显变化趋势,这表明碳化物对合金再结晶无明显的抑制作用,随着热处理温度升高,再结晶厚层深度明显增加;C对单晶高温合金再结晶抑制作用与形成碳化物的形态和密度有关,在合金表层形成高密度的碳化物,从而对再结晶晶界形成钉扎作用,阻碍晶界的迁移,能够起到抑制再结晶的作用。  相似文献   

3.
研究元素碳和硼对含铼镍基定向柱晶高温合金相转变温度、元素偏析和碳化物析出相的影响。结果表明:随着碳含量的增加,液相线温度逐步降低,而碳化物的析出温度上升。硼的添加造成合金液相线温度、碳化物析出温度和固相线温度均下降。随着碳含量的增加,铼元素的偏析先增大后减小,而其它元素的偏析程度变化并不是很大。铼、钨、钽的偏析随硼的加入而逐渐增大。合金中碳化物的形态主要为汉字体状,碳化物数量随着碳含量的增加逐渐增大。添加硼元素的合金中析出的碳化物较不含硼元素的合金中析出的碳化物更加集中和粗大。  相似文献   

4.
研究了碳(C)对第一代镍基单晶高温合金AM3显微组织的影响。结果表明,随着碳含量的增加,枝晶形貌和间距无明显变化,合金中共晶的数量明显减少,一次碳化物逐渐增多。该合金中一次碳化物形貌通常为块状、骨架状和汉字状。当含碳量较高时,碳化物形貌为由骨架状连接形成的网状碳化物(汉字状碳化物)。  相似文献   

5.
采用光学显微镜、电子探针和拉伸实验研究单重退火处理对BTi-6431S合金显微组织和力学性能的影响。结果表明:随退火温度的升高,合金中的初生α相粗化,趋于等轴状,体积分数逐渐降低;β相和次生α相的体积分数增加。随退火温度的升高,合金的室温强度先升高后降低,高温强度则逐渐升高;但是室温和高温塑性均不断下降。经过980℃退火处理后,BTi-6431S合金获得良好的高温强度和室温塑性匹配,此时合金650℃的抗拉强度达到600 MPa以上,室温伸长率超过8%。  相似文献   

6.
铸造高温合金中氮的影响机理与控制   总被引:1,自引:0,他引:1  
总结中国科学院院金属研究所高温合金与金属间化合物课题组近年来开展的几种铸造高温合金中氮(N)的研究结果;讨论了铸造高温合金中N的控制方法.结果表明:无论镍基还是钴基铸造高温合金,N含量随Cr含量或返回次数和比例的增加而增大,过高的N含量降低合金的力学性能,并导致合金质量明显下降,但N的影响机理不同;对镍基铸造高温合金,N主要以极难分解的TiN颗粒团簇存在于合金熔体中,在凝固过程中作为核心促进TiC碳化物的析出与快速长大,块状碳化物阻塞枝晶间的通道,降低合金液的流动性和补缩性,导致合金组织中的显微疏松明显增加以及合金力学性能的降低;对钴基铸造高温合金,高N含量提高合金的初始凝固温度,使得合金枝晶组织粗大,枝晶间板条状M7C3共晶碳化物数量增多、尺寸增大,抑制周围基体中M<,23>C<,6>相的沉淀,导致共晶碳化物/基体界面更容易形成裂纹而降低合金力学性能.  相似文献   

7.
采用电阻炉在780~820℃下冶炼纯度为99.85%的工业纯铝等原料,加入中间合金变质得到一定成分配比的活塞硅铝合金。改变合金中铜的含量制成相应试样,观察其显微组织随铜含量的变化,测试了试样在室温和300℃高温下的抗拉强度。结果表明:当合金中含Cu量从0%增加到1.0%、2.5%时,含Ni相由块状Al3Ni相依次变化为条带状Al3CuNi相、骨骼状的Al7Cu4Ni相;随Cu含量增加,合金的室温和300℃高温抗拉强度逐步增加。  相似文献   

8.
利用光学显微镜、扫描电子显微镜、电子探针和X射线衍射等研究了Zr对一种铸造镍基高温合金一次碳化物和性能的影响.结果表明,添加Zr使铸造镍基高温合金中的一次MC碳化物形貌和分布发生明显变化.随Zr含量增加,晶粒内的骨架状碳化物减少,分布在晶界上的碳化物相应增多.碳化物形貌也由片状或针状向比较孤立的块状转变.能谱分析表明,片状碳化物含Zr量低,主要成分为Nb和C,而块状碳化物几乎有半数的Nb为Zr所替代.掺杂了Zr的MC碳化物晶格常数变大.合金的1100℃/40 MPa条件下持久寿命随Zr含量增加,先增加,后减少,在Zr含量为0.049%时合金达到最大寿命77.8 h.在1000℃时合金的抗拉强度随着Zr含量增加而缓慢地增加,且伸长率也相应提高.  相似文献   

9.
通过高温拉伸、TEM和SEM等手段对2B25-T3511铝合金高温力学性能及组织变化进行研究。结果表明,随拉伸温度升高,合金强度逐渐下降,其中抗拉强度随温度升高而降低的趋势较屈服强度显著;伸长率先升高-降低-略有升高-降低的"M"状变化趋势。在175℃以下,晶粒内基本没有新析出相,合金基体随拉伸温度升高而不断发生软化是强度降低的主要因素,合金基体与相粒子之间的界面弱化以及175℃以上时晶内细小片针状析出相的析出是合金塑性呈现"M"状变化的原因。随温度升高,断口形貌也由沿晶断裂为主逐渐过渡到以高温滑移特征以及基体/沉淀相界面的滑脱为主的韧窝形貌。  相似文献   

10.
研究了不同含量C对镍基单晶高温合金DD90凝固组织的影响。结果表明:随着C含量的增加,一次枝晶间距逐渐增大,凝固范围逐步扩大。随着C含量的增加,合金中碳化物数量逐渐增加。碳化物形貌从块状变为汉字体状,最后连接成复杂的骨架状。随着C含量的增加,γ/γ′共晶体积分数减少,粗大的初生相γ′减少。C的添加增大了Al的偏析,减弱了Re、Mo、W的偏析。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
韩磊 《腐蚀与防护》2015,36(1):84-90,94
综述了常见的电化学噪声数据处理方法,介绍了直流趋势剔除、统计分析、快速傅立叶变换(FFT)法计算功率谱密度(PSD)以及小波变换处理电化学噪声信号的基本过程,并阐释了各种数学处理及所得参数的物理意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号