首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 196 毫秒
1.
2.
3.
Environmental legislations in the Western world impose stringent effluent quality standards for ultimate protection of the environment. This is also observed in Turkey. The current paper presents efforts made to simulate an existing 0.77 million m3/day conventional activated sludge plant located at Ankara, AWTP. The ASM1 model was used for simulation in this study. The model contains numerous stoichiometric and kinetic parameters, some of which need to be determined on case by case bases. The easily degradable COD (S(S)) was determined by two methods, physical-chemical and respirometric methods, namely. The latter method was deemed unreliable and rejected in the further study. Dynamic simulation with SSSP program predicted effluent COD and MLSS values successfully while overestimating OUR. A complete fit could only be obtained by introducing a dimensionless correction factor (etaO2 = 0.58) to the oxygen term in ASM1.  相似文献   

4.
Computer modelling has been used in the last 15 years as a powerful tool for understanding the behaviour of activated sludge wastewater treatment systems. However, computer models are mainly applied for domestic wastewater treatment plants (WWTPs). Application of these types of models to industrial wastewater treatment plants requires a different model structure and an accurate estimation of the kinetics and stoichiometry of the model parameters, which may be different from the ones used for domestic wastewater. Most of these parameters are strongly dependent on the wastewater composition. In this study a modified version of the activated sludge model No. 1 (ASM 1) was used to describe a tannery WWTP. Several biological tests and complementary physical-chemical analyses were performed to characterise the wastewater and sludge composition in the context of activated sludge modelling. The proposed model was calibrated under steady-state conditions and validated under dynamic flow conditions. The model was successfully used to obtain insight into the existing plant performance, possible extension and options for process optimisation. The model illustrated the potential capacity of the plant to achieve full denitrification and to handle a higher hydraulic load. Moreover, the use of a mathematical model as an effective tool in decision making was demonstrated.  相似文献   

5.
The selector activated sludge (SAS) systems are known to prevent excessive growth of filamentous microorganisms responsible for bulking sludge, but these systems were hardly ever modelled. This study aimed to develop a model capable of predicting rapid substrate removal in the SAS systems. For this purpose, the Activated Sludge Model No. 3 (ASM3) was extended with three processes (adsorption, direct growth on the adsorbed substrate under aerobic or anoxic conditions). The modified ASM3 was tested against the results of batch experiments with the biomass originating from two full-scale SAS systems in Germany. The endogenous biomass was mixed with various readily biodegradable substrates (acetate, peptone, glucose and wastewater) and the utilisation of substrate (expresses as COD) and oxygen uptake rates (OURs) were measured during the experiments. In general, model predictions fitted to the experimental data, but a considerable number of kinetic (5) and stoichiometric (2) parameters needed to be adjusted during model calibration. The simulation results revealed that storage was generally a dominating process compared to direct growth in terms of the adsorbed substrate utilisation. The contribution of storage ranged from 65-71% (Plant A) and 69-92% (Plant B).  相似文献   

6.
A novel hybrid respirometric principle is proposed that is particularly suited to sludge and wastewater characterisation in the context of activated sludge process models. Advantages of two respirometric principles are combined and their disadvantages eliminated to increase measuring frequency and precision. Emphasis is put on decreasing the bias in parameter estimates that results from the use of unreliable sensor constants in the calculation of respiration rates. To this end checks for dissolved oxygen probes, aeration systems and pumps are built into the respirometer's operation. Checks are to be run while the respirometric batch experiment is conducted so that between-experiment variation is eliminated and within-experiment variation is minimised. It is also stressed that a combined sensor/process model should be used to estimate the process parameters rather than a sequential procedure in which the sensor constants are first used to calculate respiration rates, that are subsequently used for sludge and wastewater characterisation. Finally, three possible practical implementations of the new principle are discussed in relation to maximising parameter estimation accuracy.  相似文献   

7.
Kinetic modelling of the hydrolysis stage of municipal activated sludge, which is presumed to be the rate-limiting step in the anaerobic sludge digestion process, was studied by measuring methane production rate (MPR) in anaerobic batch tests. The MPR curves revealed that the degradable organic components in municipal sludge could be classified into two fractions having different kinetics. The first fraction (XS1) constituted about 55% of the sludge COD and degraded with first-order kinetics. The second fraction (XS2), which degraded during the initial phase, accounted for about 21% of sludge COD. The degradation kinetics for XS2 was expressed by Contois-type equation with respect to concentration of substrate in the fed sludge and that of active biomass in the mixture. Simultaneous batch aerobic respirometric tests showed that the activated sludge was composed of 53% heterotrophic biomass (XH-Aerobe) COD and 20% of slowly biodegradable COD (XS), that had same kinetic expressions as observed in the batch anaerobic tests. The observed correlation between substrate fractions suggests XS1 and XS2 could be directly mapped to the aerobic state variables of XH-Aerobe and Xs respectively. The degradation of XS1 seems to be anaerobic decay of XH-Aerobe while XS2 is thought to be hydrolysis of XS by microcosm of the sludge.  相似文献   

8.
Membrane bioreactors (MBRs) are attracting global interest but the mathematical modeling of the biological performance of MBRs remains very limited. This study focuses on the modeling of a side-stream MBR system using the Activated Sludge Model No. 1 (ASM1), and compares the results with the modeling of traditional activated sludge processes. ASM1 parameters relevant for the long-term biological behaviour in MBR systems were calibrated (i.e. Y(H) = 0.72 gCOD/gCOD, Y(A) = 0.25 gCOD/gN, b(H) = 0.25 d(-1), b(A) = 0.080 d(-1) and f(p) = 0.06), and generally agreed with the parameters in traditional activated sludge processes, with the exception that a higher autotrophic biomass decay rate was observed in the MBR. Influent wastewater characterization was proven to be a critical step in model calibration, and special care should be taken in characterizing the inert particulate COD (X(I)) concentration in the MBR influent. It appeared that the chemical-biological method was superior to the physical-chemical method. A sensitivity analysis for steady-state operation and DO dynamics suggested that the biological performance of the MBR system (the sludge concentration, effluent quality and the DO dynamics) are very sensitive to the parameters (i.e. Y(H), Y(A), b(H), b(A) micro(maxH) and micro(maxA), and influent wastewater components (X(I), S(s), X(s) and S(NH)).  相似文献   

9.
The treatment of winery wastewater was performed at full-scale applying a two-stage fixed bed biofilm reactor (FBBR) system for the discharge in the sewerage. The results of the first year of operation at the full-scale plant are presented. Values of removed organic loads and effluent concentrations were interpreted on the basis of the COD fractionation of influent wastewater assessed through respirometric tests. The average removal efficiency of total COD was 91 %. It was not possible to reach an higher efficiency because of the unbiodegradable soluble fraction of COD (about 10% of total COD on average during the whole year), that cannot be removed by biological process or settling. Due to the high empty space offered by the plastic carriers, FBBRs did not require backwashing during the seasonal operationing period of the plant (September-March). In comparison with other treatment systems the FBBR configuration allows one to ensure a simple management, to obtain high efficiency also in the case of higher fluctuations of flow and loads and to guarantee a good settleability of the sludge, without bulking problems.  相似文献   

10.
This study investigated the discrepancies between the BOD removal rates measured during short term assays and those measured during continuous activated sludge treatment of bleached kraft mill effluent (BKME). A combination of batch tests and fed batch tests with oxygen uptake rate (OUR), chemical oxygen demand (COD), biochemical oxygen demand (BOD), and mixed liquor volatile suspended solids (MLVSS) measurements were used to characterize the degradation rates for the activated sludge treatment of BKME and to divide the soluble readily biodegradable substrate into two to five separate fractions based on biodegradation rates. The removal rates varied by over an order of magnitude between the most readily degradable substrates (1 x 10(-3) mg COD/mg MLVSS minute), and the more slowly degradable substrates (2 x 10(-5) mg COD/mg MLVSS minute). If the readily biodegradable fraction of BKME was modeled as one substrate, initial rate kinetic measurements from batch tests were heavily influenced by the fractions with the greatest degradation rates, while any remaining BOD in the treated effluent was predominantly from the slowly degradable fraction, giving inconsistent results. Taking the multi-component nature of the wastewater into account, batch test results can be used to predict fed-batch and continuous activated sludge reactor performance.  相似文献   

11.
The biological wastewater treatment using aerobic granular sludge is a new and very promising method, which is predominantly used in SBR reactors which have higher volumetric conversion rates than methods with flocculent sludge. With suitable reactor operation, flocculent biomass will accumulate into globular aggregates, due to the creation of increased substrate gradients and high shearing power degrees. In the research project described in this paper dairy wastewater with a high particle load was treated with aerobic granular sludge in an SBR reactor. A dynamic mathematical model was developed describing COD and nitrogen removal as well as typical biofilm processes such as diffusion or substrate limitation in greater detail. The calibrated model was excellently able to reproduce the measuring data despite of strongly varying wastewater composition. In this paper scenario calculations with a calibrated biokinetic model were executed to evaluate the effect of different operation strategies for the granular SBR. Modeling results showed that the granules with an average diameter of 2.5 mm had an aerobic layer in between 65-95 microm. Density of the granules was 40 kgVSS/m3. Results revealed amongst others optimal operation conditions for nitrogen removal with oxygen concentrations below 5 gO2/m3. Lower oxygen concentrations led to thinner aerobic but thicker anoxic granular layers with higher nitrate removal efficiencies. Total SBR-cycle times should be in between 360-480 minutes. Reduction of the cycle time from 480 to 360 minutes with a 50% higher throughput resulted in an increase of peak nitrogen effluent concentrations by 40%. Considering biochemical processes the volumetric loading rate for dairy wastewater should be higher than 4.5 kgCOD/(m3*d). Higher COD input load with a COD-based volumetric loading rate of 9.0 kgCOD/(m3*d) nearly led to complete nitrogen removal. Under different operational conditions average nitrification rates up to 5 gNH/(m3*h) and denitrification rates up to 3.7 gNO/(m3*h) were achieved.  相似文献   

12.
Ordinary heterotrophic organism (OHO) active biomass (ZBH) is a key parameter in models for activated sludge systems, which defines quantitatively the kinetic rates of relevant processes. However, ZBH has not been measured directly with consistent success: a simple respirometric batch test has provided varying correspondence between measured and theoretical concentrations. In this paper, the batch test is applied to mixed liquors drawn from well defined anoxic/aerobic parent systems at 10 and 20 d sludge ages, with consistent but poor correspondence between measured and theoretical values. In contrast, aerobic digestion batch tests on the same mixed liquors give good correspondences. It is concluded that the differences between theoretical and batch test measured values are due to the batch test method itself and its interpretation. It is found that the batch test conditions (particularly the substrate/ZBH ratio) influence the kinetic constants derived from the data, and hence the ZBH estimate. Two kinetic models with two competing OHO populations, a fast and a slow grower, are developed and applied to the batch tests and parent systems. The first model is based on kinetic selection only, while the second includes additional metabolic selection. Both models can account for the observations in the batch tests, but the second provides greater consistency between simulations of the parent systems and batch tests.  相似文献   

13.
To model biological nitrogen and phosphorus removal systems with an affordable complexity, the ASM2d model structure is based on many assumptions. In this study, some of these assumptions, however, were observed to become invalid when the biological behaviour in the system altered in response to changes in the operation of the system, a pilot-scale N and P removing SBR. Particularly, the three applied operational scenarios resulted in three distinctive responses in the SBR, namely pronounced limitation of the hydrolysis of the organic nitrogen, nitrite build-up during aerobic conditions and also nitrite build-up during anoxic conditions. This shows that even for the same system with the same influent wastewater composition, the model structure of the ASM2d does not remain constant but adapts parallel to dynamic changes in the activated sludge community. On the other hand, the three calibrated ASM2d models still lacked the ability to entirely describe the observed dynamics particularly those dealing with the phosphorus dynamics and hydrolysis. Understanding the underlying reasons of this discrepancy is a challenging task, which is expected to improve the modelling of bio-P removing activated sludge systems.  相似文献   

14.
The aim of this study was to evaluate the feasibility of the re-use of the winery wastewater to enhance the biological nutrient removal (BNR) process. In batch experiments it was observed that the addition of winery wastewater mainly enhanced the nitrogen removal process because of the high denitrification potential (DNP), of about 130 mg N/g COD, of the contained substrates. This value is very similar to that obtained by using pure organic substrates such as acetate. The addition of winery wastewater did not significantly affect either phosphorus or COD removal processes. Based on the experimental results obtained, the optimum dosage to remove each mg of N-NO3 was determined, being a value of 6.7 mg COD/mg N-NO3. Because of the good properties of the winery wastewater to enhance the nitrogen removal, the viability of its continuous addition in an activated sludge pilot-scale plant for BNR was studied. Dosing the winery wastewater to the pilot plant a significant increase in the nitrogen removal was detected, from 58 to 75%. The COD removal was slightly increased, from 89 to 95%, and the phosphorus removal remained constant.  相似文献   

15.
Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.  相似文献   

16.
Two-step nitrification models are generally calibrated using short-term respirometric batch experiments. Important discrepancies appear between model predictions and experimental observations just after the pulse addition since a fast transient in the OUR profile is experimentally observed. Acceleration of the OUR appears ongoing between the substrate addition and attainment of the maximum OUR value. Among the several phenomena that could contribute to this observation, the most probable cause is the limitation of reducing equivalents required for maximal ammonia monooxygenase activity at the time of substrate addition. Ignoring acceleration would result in large parameter estimation errors from respirometric batch experiments. This work proposes a simple methodology to successfully describe (not to explain) the acceleration phenomenon estimating only two parameters. This methodology consists of introducing a Gaussian-like expression in the model.  相似文献   

17.
Activated sludge models, and ASM1 in particular, are well recognised and useful mathematical representations of the macroscopic processes involved in the biological degradation of the pollution carried by wastewater. Nevertheless, the use of these models through simulation software requires a careful methodology for their calibration (determination of the model parameters' values) and the validation step (verification with an independent data set). This paper presents the methodology and the results of dynamic calibration and validation tasks as a prior work to a modelling project for defining a reference guideline destined to French designers and operators. To reach these goals, a biological nutrient removal (BNR) wastewater treatment plant (WWTP) with intermittent aeration was selected and monitored for 2 years. Two sets of calibrated parameters are given and discussed. The results of the long-term validation task are presented through a 2-month simulation with lots of operation changes. Finally, it is concluded that, even if calibrating ASM1 with a high degree of confidence with a single set of parameters was not possible, the results of the calibration are sufficient to obtain satisfactory results over long-term dynamic simulation. However, simulating long periods reveals specific calibration issues such as the variation of the nitrification capacity due to external events.  相似文献   

18.
This paper presents the experiments carried out in a hybrid sequencing batch reactor (HSBR), used for biological treatment of sewage. The HSBR was built in a cylindrical shape and made of stainless steel, with a volume of 1.42 m3. Besides the biomass in suspension, the reactor also carried fixed biomass (hybrid process), adhered in the support material. This consisted of a nylon net disposed in a grille for biofilm biomass adhesion. The reactor worked fully automated in operational cycles of maximum 8 hours each, presenting the following phases: filling, anoxic, aerobic, settle and draw of treated effluent, with 3 fillings per cycle. Increasing organic loads (0.14 to 0.51 kg TCOD/m3 day) and ammonium loads (0.002 to 0.006 kg NH4-N/m3.day) were tested. We monitored the reactor's performance by measuring the liquid phase (COD, pH, temperature, DO, nitrogen and phosphorus) during the cycles and by measuring the sludge through respirometric tests. The results obtained demonstrated TCOD removal efficiency between 73 and 96%, and ammonium removal efficiency between 50 and 99%. At the end of the cycles, the effluent presented ammonium concentration <20 mg/L, meeting the Brazilian environmental legislation standards (CONAMA 357/2005) regarding discharges into the water bodies. Respirometric tests showed biomass dependency on FCOD concentrations. Results have demonstrated the potential of this type of reactor for decentralized treatment of domestic wastewater.  相似文献   

19.
Factors affecting nitrogen removal by nitritation/denitritation.   总被引:4,自引:0,他引:4  
Nitrogen removal from wastewater with high nitrogen concentration and low COD/N ratio via nitrite is advantageous. The specific character of the sludge liquor enables the application of such a method. The factors affecting process efficiency were studied. From the factors followed pH, NH4+/NH3 and NO2-/HNO2 concentration and distribution seem to be most important, using sequencing batch reactor technology and treating wastewater with high NH4+ concentration (above 1 g/l). The efficient oxidation of N-NH4+ to nitrite was achieved at a minimal nitrate production. Primary sludge was used as an internal source of substrate for the denitritation because of the organic substrate deficiency of the sludge liquor. The denitritation can be controlled by dosing of the primary sludge and can be complete. There are two operational alternatives of sludge liquor pretreatment: without pH control--lower operational costs and N-removal up to 65% and with pH control--higher operational costs and N-removal close to complete.  相似文献   

20.
In order to evaluate the characteristics of aerobic granular sludge, a sequencing batch reactor, feeding with synthetic wastewater at the organic loading rate of 8 kg COD/m3 d, was employed on the laboratory scale. Granules occurred in the reactor within 1 week after the inoculation from conventional flocculent sludge. Aerobic granular sludge was characterised by the outstanding settling properties and considerable contaminates removal efficiencies. The SVI30 values were in the range of 20 to 40 ml g(-1). However, the sludge volume index of short settling time (e.g. SVI10--10 min) is suggested to describe the fast settling properties of aerobic granular sludge. The potential application in the decentralised system is evaluated from the point view of footprint and high bioactivity. The occurrence of sloughing, resulting from the outgrowth of filamentous organisms, would be responsible for the instability of aerobic granules. The starvation phase should therefore be carefully controlled for the maintenance and stability of aerobic granular sludge system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号