首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
吨包装内胆挤出吹塑成型型坯吹胀的数值模拟   总被引:1,自引:0,他引:1  
针对吨包装内胆挤出吹塑型坯吹胀阶段的成型工艺,采用Workbench-Polyflow分析软件实现型坯吹胀模拟。建立型坯及模具的几何模型和网格模型;利用Polyflow中的参数渐进方法建立型坯吹胀阶段中的模具闭合运动模型。获得型坯在吹胀过程中的型坯轮廓曲线分布以及吹胀完毕后的型坯壁厚分布;分析了模具运动速度和吹胀压力对型坯与模具的接触时间、吹胀时间及壁厚的影响。  相似文献   

2.
3D挤出吹塑型坯吹胀的数值模拟   总被引:1,自引:0,他引:1  
采用超弹本构模型对挤出吹塑型坯吹胀进行了3D数值模拟,得到了型坯在吹胀过程中的型坯轮廓曲线分布以及吹胀完毕时的型坯壁厚分布,模拟的结果与文献的实验结果相吻合;探讨了材料的性能、初始条件和吹胀压力等工艺条件对吹胀完毕后的壁厚分布影响,这为在实际生产获得最佳的加工工艺参数提供了依据。  相似文献   

3.
挤出吹塑中型坯成型的神经网络模型的选取   总被引:3,自引:0,他引:3  
陆松  黄汉雄 《塑料》2002,31(2):21-23
型坯成型是挤出吹塑中的一个重要阶段,人工神经网络是一门新兴交叉科学.本文用几种不同的神经网络模型预测了挤出吹塑中型坯成型时的直径膨胀率,选取其中精度和效率均较高的模型,以用于下一步用神经网络来预测型坯成型时的壁厚膨胀率和最终制品的壁厚分布.  相似文献   

4.
挤出吹塑中型坯自由吹胀的动力学分析   总被引:2,自引:0,他引:2  
聚合物挤出吹疗程 型坯的自由吹胀受到多方面因素的影响。采用动力学方法对此进行了研究。模拟了史胀过程听型坯轮廓变化, 吹胀压力,材料模量,型坯初始壁厚对此过程的影响。  相似文献   

5.
对挤出吹塑过程的三个阶段:型坯成型、型坯吹胀以及制品冷却与固化阶段的实验方法和装置的研究现状进行了详细论述。  相似文献   

6.
型坯温差法优化挤出吹塑中空工业制件壁厚分布的研究   总被引:1,自引:0,他引:1  
以典型复杂中空工业制件为研究对象,根据聚合物流变学原理,提出了用型坯温差法来优化挤出吹塑中空工业制件壁厚分布的均匀性:在型坯挤出或型坯吹胀之前,采用水或者空气强制冷却变形较大部位对应的型坯,使局部温度迅速降低,使型坯具有一定的温度梯度。结果表明,用型坯温差法优化后的吹塑成型油箱壁厚分布标准差由0.7249减小为0.4475、0.4582,壁厚均匀性明显得到改善,验证了利用型坯温差法优化油箱制件壁厚分布均匀性的方法是可行的。  相似文献   

7.
《塑料》2019,(5)
为改善复杂非轴对称挤出吹塑制品的壁厚均匀性,以医用床头板为例,基于Polyflow软件模拟了医用床头板的非等温吹胀过程,并用目标函数评估最终制品的壁厚均匀性。根据正交实验分析了吹胀压力、吹胀时间、型坯初始温度及型坯初始壁厚4个成型工艺参数对制品壁厚均匀性的影响,得到最佳工艺参数组合为A3B3C1D1,即吹胀压力0. 7 MPa、吹胀时间5 s、型坯初始温度180℃、型坯初始壁厚3 mm,最后对最佳工艺参数组合进行了模拟验证。结果表明,优化后的工艺参数可使最终医用床头板的壁厚更加均匀,为在实际生产过程中复杂非轴对称挤吹制品的成型工艺参数改进提供有效指导,提高生产效率。  相似文献   

8.
吹塑成型是成型中空塑料制品的主要成型方法,其成型过程包括型坯成型、型坯吹胀和制品的冷却固化三个阶段。中空制品的吹型成型质量受各种工艺因素的影响,包括熔融温度、吹胀压力、拉仲速率、冷却时间、聚合物材料柱能等。吹塑成型数值模拟可预测制品的壁厚均匀性,残余应力和收缩状况等,指导吹塑成型模具的优化设计,并通过优化工艺参数获得最佳性能的吹塑制品。本文对吹塑成型CAE技术的发展状况进行了详细研究,并对其应用现状作了简单分析。  相似文献   

9.
改性聚乙烯醇挤出吹塑型坯膨胀研究   总被引:2,自引:1,他引:1  
采用在线流变仪对改性聚乙烯醇(PVA)进行剪切粘度测试.结果表明,在测试的剪切速率范围内(50~650 s-1),改性PVA熔体的剪切粘度为200~600 Pa·s,与吹塑级高密度聚乙烯的剪切粘度相当,因而可用于吹塑中空容器.研究了模口间隙、挤出流率和模口温度对改性PVA型坯膨胀的影响.结果表明,挤出流率增加、模口间隙减小、模口温度降低均可不同程度地提高型坯的直径膨胀和壁厚膨胀.  相似文献   

10.
影响挤出吹塑制品质量的成型工艺分析   总被引:6,自引:0,他引:6  
在实验的基础上,探讨了成型工艺对挤出吹塑制品质量的影响。制品壁厚分布情况和制品重量是制品质量衡量标准中最重要的两个方面。熔体温度和螺杆转速对型坯成型中型坯的膨胀和垂伸产生影响进而影响制品壁厚分布和制品重量,而吹胀压力对制品壁厚分布有一定影响,但不会影响制品最终重量;其变化不会导致制品壁厚整体的增大或减小。研究得到的结论在实际生产中有助于确定最优成型工艺条件。  相似文献   

11.
将支持向量机应用于挤出吹塑过程的一段型坯壁厚分布的预测,并将预测结果与人工神经网络预测的结果进行比较,验证了支持向量机具有更强的泛化能力。  相似文献   

12.
挤出吹塑中型坯成型的有限元模拟——型坯尺寸预测   总被引:1,自引:0,他引:1  
苗延盛  黄汉雄 《中国塑料》2003,17(11):78-80
建立了塑料挤出吹塑中平直型机头内非牛顿粘弹性熔体的流动模型,并利用POLYFLOW有限元软件进行求解,预测了不同型坯长度和不同流量时的型坯尺寸分布。  相似文献   

13.
The simulation of the parison formation process in blow molding has been studied. The flow field was divided into two regions, namely, the extrudate swell region near the die lip and the parison formation region after the exit swell. In the swell region, we predicted the swelling ratio and residual stress distribution for high Weissenberg numbers for steady planar well using the 1-mode Giesekus model. In the parison formation region, the flow is assumed to be an unsteady unaxial elongational flow including drawdown and recoverable swell and is modeled using the 10-mode Giesekus model. We calculated the time course of parison length and thickness distribution, and compare the calculation results of parison length with experimental data. It was found that the predicted values agreed rather well with the experimental values. The calculation results could especially predict the shrink-back, which is the phenomenon where the parison length becomes shorter after the cessation of extrusion, and it was found tat this was caused by the recoverable swell of the parison, which depends on the tensile stress generation in the die. Various flow rates and die geometries were studied and confirmed the reliability and usefulness of the method.  相似文献   

14.
This work presents the effect of die geometry and die gap opening on the extrudate swell phenomenon, in complex parison formation using the vertical wall distribution system (VWDS) and partial wall distribution system (PWDS). The BlowParison© software from IMI is used to predict the parison formation for a combined VWDS/PWDS system, accounting for swell, sag, and nonisothermal effects. This software couples a fluid mechanics approach to represent the die flow, with a solid mechanics approach to represent the parison behavior outside the die, and a mathematical swell model to account for the pronounced elongational and shear stresses at high Weissenberg numbers. The emphasis is placed on experimental validation of the predicted parison dimensions using four diverging die geometries and different sets of VWDS/PWDS profiles. The experimental and predicted weight profiles for a dissected fuel tank are also presented. Both experimental and simulation results suggest a strong dependence of extrudate swell to the die geometry in the die land zone. The results also demonstrate the validity of the numerical predictions for part design purposes given the multitude of experimental validations presented in this work. POLYM. ENG. SCI., 2009. Published by the Society of Plastics Engineers  相似文献   

15.
In our previous study, we calculated the time course of parison length in the parison formation stage, but it could predict only the parison area swell. The next target in our study is to calculate the parison diameter and thickness swell. Annular extrudate swell simulation is necessary for the understanding of various kinds of swelling ratios in blow molding. We have examined three kinds of swells (outer diameter, thickness, and area swells) obtained from simulation results of annular extrudate swell, using the Giesekus model, and have developed a method of predicting parison outer diameter and thickness swell values. The predicted values of parison outer diameters are discussed in comparison with experimental data, and reasonable results are obtained by the proposed method. This prediction method could also be applied to the parison formation process using a parison controller. As a result, it is possible to predict approximately the whole process of parison formation by numerical simulation.  相似文献   

16.
The measurement of parison swell is difficult because swell is a time-dependent phenomenon and because, for a parison, two independent swell ratios must be determined. A new technique has been developed that makes use of a video camera focused on the end of the parison. Unlike previous techniques designed to measure time-dependent swell, no oil bath is required. The new technique was used to study the effect of molecular weight parameters on the parison swell of high density polyethylene. For a series of blends of two resins having significantly different weight-average molecular weights, the blends exhibited larger swell ratios than the base resins.  相似文献   

17.
An important factor in the selection of blow molding resins for producing handled bottles is the effective diameter swell of the parison. Ideally, the diameter swell is directly related to the weight swell and would require no separate consideration. In actual practice, the existence of gravity, the finite parison drop time and the anisotropic aspects of the blow molding operation prevent reliable prediction of the parison diameter swell directly from the weight swell. The parison diameter swell is a complex function of the weight swell, the rate of swell and the melt strength. Elements of this function are presented which show the effect of extrusion rate, parison drop time and parison weight. A technique is presented which allows the estimation of local weight and diameter swell ratios. Their direct relationship is confirmed by data obtained on several blow molding resins. The relationship between weight swell and diameter swell is definitely anisotropic. A mathematical model for swell is proposed which incorporates experimentally determined rate constants and swell coefficients. Correlations are given which suggest fundamental relationships between these derived coefficients and basic variables such as resin properties or process conditions. The model's predictive capability is demonstrated by using it to back calculate parison dimensions.  相似文献   

18.
A series of experiments were carried out on the parison formation stage in extrusion blow molding of high‐density polyethylene (HDPE) under different die temperature, extrusion flow rate, and parison length. The drop time of parison when it reached a given length and its swells, including the diameter, thickness, and area swells, were determined by analyzing its video images. Two back‐propagation (BP) artificial neural network models, one for predicting the length evolution of parison with its drop time, the other predicting the swells along the parison, were constructed based on the experimental data. Some modifications to the original BP algorithm were carried out to speed it up. The comparison of the predicted parison swells using the trained BP network models with the experimentally determined ones showed quite a good agreement between the two. The sum of squared error for the predictions is within 0.001. The prediction of the parison diameter and thickness distributions can be made online at any parison length or any parison drop time within a given range using the trained models. The predicted parison swells were analyzed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2230–2239, 2005  相似文献   

19.
Parison dimensions in extrusion blow molding are affected by two phenomena, swell due to stress relaxation and sag drawdown due to gravity. It is well established that the parison swell and sag are strongly dependent on the die geometry and the operating conditions. The availability of a modeling technique ensures a more accurate prediction of the entire blow molding process, as the proper prediction of the parison formation is the input for the remaining process phases. This study considers both the simulated and the experimental effects of the die geometry, the operating conditions, and the resin properties on the parison dimensions using high density polyethylene. Parison programming with a moving mandrel and the flow rate evolution in intermittent extrusion are also considered. The parison dimensions are measured experimentally by using the pinch-off mold technique on two industrial scale machines. The finite element software BlowParison® developed at IMI is used to predict the parison formation, taking into account the swell, sag, and nonisothermal effects. The comparison between the predicted parison/part dimensions and the corresponding experimental data demonstrates the efficiency of numerical tools in the prediction of the final part thickness and weight distributions. POLYM. ENG. SCI., 47:1–13, 2007. © 2006 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号