首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We have investigated the effect of 5-HT2 receptor agonist or antagonist administration on postsynaptic 5-HT1A receptor sensitivity assessed by two behavioral measures, reciprocal forepaw treading or hypothermia induced by acute injection of the 5-HT1A receptor agonist 8-OH-DPAT. The effectiveness of these drug treatments to downregulate 5-HT2A receptors was confirmed by measuring the binding of [3H]-ketanserin in cortical homogenates, because all of these drug treatments have been shown to result in the downregulation of 5-HT2A receptor sites. Acute or chronic treatment of rats with the 5-HT2 receptor antagonist mianserin, or chronic administration of the 5-HT2A receptor antagonist ketanserin, did not alter 8-OH-DPAT-induced hypothermia or forepaw treading. These data indicate that downregulation of 5-HT2A receptors is not sufficient to alter these postsynaptic 5-HT1A receptor-mediated responses. Chronic treatment of rats with the 5-HT2 receptor agonist DOI, however, resulted in the attenuation of both 5-HT1A receptor-mediated responses measured in separate experimental groups. The apparent desensitization of 5-HT1A receptors following chronic DOI treatment was not accompanied by a change in either the number or affinity of 5-HT1A receptor sites as measured by the binding of [3H]-8-OH-DPAT in hippocampal homogenates. Chronic activation of 5-HT2 receptors may be one mechanism by which the sensitivity postsynaptic 5-HT1A receptors can be regulated.  相似文献   

2.
In this study, the effects of serotonin (5-HT) on in vitro lymphoproliferation in rainbow trout (Oncorhynchus mykiss) are investigated. Serotonin exerted immunosuppressive effects on lipopolysaccharide (LPS) and phytohemagglutinin (PHA)-stimulated proliferation of fish peripheral blood lymphocytes (PBL). 8-OH-DPAT (an agonist of 5-HT1A receptors) mimicked the inhibitory effects of serotonin on lymphocyte proliferation, whereas addition of spiperone (an antagonist of 5-HT1A and 5-HT1B receptors) reversed these inhibitory effects, indicating that 5-HT1A receptors may be implicated in serotonin-induced immunosuppression. Furthermore, in this study the serotonergic receptors present on fish peripheral lymphocytes were characterized. A Scatchard plot of serotonin binding to fish lymphocytes followed the 'bell' shape curve with a Bmax of 0.63 microM and a Kd of 1.54 x 10(-8) M/10(6) cells. These results demonstrate the presence of positive-type co-operation among receptor populations. In a displacement study, serotonin inhibited the binding of 3H-5HT to the receptor sites both in resting and LPS/PHA-stimulated trout lymphocytes. Interestingly, the agonists (8-OH-DPAT and buspirone) and antagonist (NAN-190) of the 5-HT1A receptor subtype failed to displace 3H-5HT binding to receptor sites in resting cells, whereas these agents inhibited 3H-5HT binding in LPS- and PHA-stimulated lymphocytes significantly, suggesting that after mitogenic stimulation, 5-HT1A receptors are expressed on lymphocytes. CGS-12066B (an agonist of 5-HT1B receptors) failed to influence significantly 3H-5HT binding to receptor sites both in resting and mitogen-stimulated lymphocytes, indicating that the 5-HT receptor subpopulation is not expressed either on resting or on LPS- or PHA-stimulated lymphocytes. Taken together, these results suggest that trout peripheral blood lymphocytes express functional serotonergic receptors, and 5-HT1A receptors, which are not expressed by resting lymphocytes, are expressed after mitogenic stimulation and implicated in the inhibition of mitogenic (LPS and PHA) responses.  相似文献   

3.
The actions of several serotonergic ligands in use or under development for the treatment of migraine headaches were examined at recombinant human 5-HT1A receptors stably expressed in Chinese Hamster Ovary cells. Affinities (K(i)s) at this site were determined in competition binding experiments with [3H]-8-OH-DPAT ([3H](+/-)8-hydroxy-N,N-dipropylaminotetralin), whilst agonist efficacy was measured by stimulation of [35S]-GTP gamma S (guanylyl-5'-[gamma[35S]thio]-triphosphate) binding. Of the prophylactic antimigraine drugs tested, methysergide and lisuride behaved as efficacious agonists (Emax > or = 90% relative to 5-HT) whereas pitozifen and (-)propranolol acted as a partial agonist (60%) and an antagonist, respectively. This suggests that there is no correlation between agonism at 5-HT1A receptors and prophylactic antimigraine action. In contrast, serotonin, dihydroergotamine, sumatriptan, naratriptan and alniditan, which are effective in acute interruption of migraine attacks, each displayed high efficacy (Emax = 100, 100, 92.6, 79.3, 79.1% respectively) and marked affinity (Ki = 18.7, 0.6, 127, 26.4 and 3.0 nM respectively) at 5-HT1A receptors. EC50 values for agonist stimulation of [35S]-GTP gamma S binding correlated with respective Ki values at 5-HT1A receptors (r = 0.93) and the stimulation of [35S]-GTP gamma S binding by these compounds was antagonised by the selective 5-HT1A antagonist WAY 100,635 (N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridinyl) cyclo-hexanecarboxamide; 100 nM). These data suggest that agonism at 5-HT1A receptors may be involved in some actions of drugs used in acute antimigraine therapy. In comparison with the above compounds, novel ligands targeted at 5-HT1B/1D receptors, such as GR125,743 (N-[4-methoxy-3-(4-methyl-piperazin-1-yl)phenyl] -3-methyl-4-(4-pyridyl)benzamide) and GR 127,935 (N-[4-methoxy-3-(4-methylpiperazin-1-yl)-phenyl]-2'-methyl-4'-(5-m ethyl-1, 2,4-oxadiazol-3-yl)-biphenyl-4-carboxamide), only weakly activated [35S]-GTP gamma S binding (32.4 and 32.1% efficacy) and displayed moderate affinity at 5-HT1A receptors (Kis 53.1 and 49.8 nM) suggesting that they constitute useful tools to differentiate 5-HT1A and 5-HT1B/1D receptor-mediated actions. In conclusion, the present data indicates that several antimigraine agents exhibit marked 5-HT1A receptor activity and that although this is unlikely to be important for prophylactic action it may be relevant to the ancilliary properties of drugs used for acute migraine treatment.  相似文献   

4.
Pindolol has been shown to be a partial agonist at 5-HT1A receptors in preclinical studies. It has also been reported to inhibit the effects of other 5-HT1A partial agonists such as ipsapirone and buspirone on hormone secretion and body temperature in man, indicating its antagonist action at 5-HT1A receptors in man. To determine if pindolol has 5-HT1A agonist as well as antagonist effects in man, pindolol, 30 mg, p.o. and placebo, were given single blind in random order to 23 normal men with indwelling venous catheters and its effects on hormone secretion and body temperature noted. Pindolol significantly increased basal plasma cortisol concentrations, whereas it decreased plasma prolactin (PRL) concentrations and body temperature. The increase in plasma cortisol due to pindolol suggests a 5-HT1A agonist action and is consistent with a 5-HT1A partial agonist mechanism in man whereas the PRL effects are consistent with an antagonist action at 5-HT1A receptors. The effects of pindolol on plasma cortisol concentration and body temperature were significantly negatively correlated. Furthermore, these results indicate significant differences in the 5-HT1A-dependent regulation of PRL and the hypothalamo-pituitary-adrenal (HPA) axis and body temperature, and suggest that human basal PRL secretion is tonically stimulated by 5-HT1A mechanism whereas the HPA axis and body temperature are not. Since rodent studies suggest differences in 5-HT1A receptor sensitivity between males and females, the results reported here need to be replicated in females. These differences in the effect of pindolol are discussed in terms of receptor reserve theory.  相似文献   

5.
1. The serotonin type 1A (5-HT1A) receptors are members of a superfamily of seven transmembrane domain receptors that couple to GTP-binding regulatory proteins (G-proteins). We have studied the modulation of agonist binding to 5-HT1A receptors from bovine hippocampus by metal ions and guanine nucleotide. 2. Bovine hippocampal membranes containing the 5-HT1A receptor were isolated. These membranes exhibited high-affinity binding sites for the specific agonist [3H]OH-DPAT. 3. The agonist binding is inhibited by monovalent cations Na+, K+, and Li+ in a concentration-dependent manner. Divalent cations such as Ca2+, Mg2+, and Mn2+, on the other hand, show more complex behavior and induce enhancement of agonist binding up to a certain concentration. The effect of the metal ions on agonist binding is strongly modulated in the presence of GTP-gamma-S, a nonhydrolyzable analogue of GTP, indicating that these receptors are coupled to G-proteins. 4. To gain further insight into the mechanisms of agonist binding to bovine hippocampal 5-HT1A receptors under these conditions, the binding affinities and binding sites have been analyzed by Scatchard analysis of saturation binding data. Our results are relevant to ongoing analyses of the overall regulation of receptor activity for G-protein-coupled seven transmembrane domain receptors.  相似文献   

6.
The aim of the present study was to characterize in vivo the 5-HT receptor subtypes which mediate the effect of microiontophoretic applied 5-HT in the guinea pig head of caudate nucleus and orbitofrontal cortex. 5-HT and the preferential 5-HT2A receptor agonist DOI and the preferential 5-HT2C receptor agonist mCPP, suppressed the quisqualate (QUIS)-induced activation of neurons in both structures. The inhibitory effect of DOI and mCPP was not prevented by acute intravenous administration of the 5-HT1/2 receptor antagonist metergoline (2 mg/kg) and the 5-HT2A/2C receptor antagonist ritanserin (2 mg/kg) in the two regions nor by the selective 5-HT2A receptor antagonist MDL100907 (1 mg/kg) in the head of caudate nucleus. However, the inhibitory effect of DOI, but not that of mCPP, was antagonized by a 4-day treatment with metergoline and ritanserin (2 mg/kg/day; using minipumps implanted subcutaneously) in head of caudate nucleus, but not in orbitofrontal cortex. Microiontophoretic ejection of the 5-HT1A/7 receptor agonist 8-OH-DPAT and of the 5-HT1A receptor antagonist WAY100635 both suppressed the spontaneous and QUIS-activated firing activity of orbitofrontal cortex neurons. At current which did not affect the basal discharge activity of the neuron recorded, microiontophoretic application of WAY100635 and BMY7378 failed to prevent the inhibitory effect of 8-OH-DPAT. The inhibitory effect of gepirone, which is a 5-HT1A receptor agonist but devoid of affinity for 5-HT7 receptors, was also not antagonized by WAY100635. Altogether, these results suggest the presence of atypical 5-HT1A receptors in the orbitofrontal cortex. The present results also indicate that the suppressant effect of DOI may be mediated by 5-HT2A receptors in head of caudate nucleus and atypical 5-HT2 receptors in orbitofrontal cortex.  相似文献   

7.
Physiological studies have shown that serotonin and 5-HT1A agonists can influence muscarinic function in the rabbit iris-ciliary body (ICB). The purpose of this study was to examine whether a direct interaction exists between muscarinic and 5-HT1A receptors in the ICB. At high concentrations, the 5-HT1A agonist 8-OH-DPAT attenuated the carbachol-induced stimulation of inositol phosphates (InsPs) production, but this was not blocked by the presence of 5-HT1A antagonists. In contrast, serotonin failed to influence carbachol-induced InsPs formation. Moreover, 8-OH-DPAT but not serotonin displayed affinity for [3H]QNB binding sites in the ICB. The combined data suggest that activation of 5-HT1A receptors in the ICB does not cause a modulation of muscarinic receptor-stimulated phosphoinositide turnover. The data instead suggest that, at high concentrations, 8-OH-DPAT acts as an antagonist at muscarinic receptors and in this way influences muscarinic receptor function. The mechanism of 5-HT-induced modulation of muscarinic function in the ICB therefore remains to be elucidated.  相似文献   

8.
A variety of observations from several rodent species suggest that a serotonin (5-HT) input to the suprachiasmatic nucleus (SCN) circadian pacemaker may play a role in resetting or entrainment of circadian rhythms by non-photic stimuli such as scheduled wheel running. If 5-HT activity within the SCN is necessary for activity-induced phase shifting, then it should be possible to block or attenuate these phase shifts by reducing 5-HT release or by blocking post-synaptic 5-HT receptors. Animals received one of four serotonergic drugs and were then locked in a novel wheel for 3 h during the mid-rest phase, when novelty-induced activity produces maximal phase advance shifts. Drugs tested at several doses were metergoline (5-HT1/2 antagonist; i.p.), (+)-WAY100135 (5-HT1A postsynaptic antagonist, which may also reduce 5-HT release by an agonist effect at 5-HT1A raphe autoreceptors; i.p.), NAN-190 (5-HT1A postsynaptic antagonist, which also reduces 5-HT release via an agonist effect at 5-HT1A raphe autoreceptors; i.p.) and ritanserin (5-HT2/7 antagonist; i.p. and i.c.v.). Mean and maximal phase shifts to running in novel wheels were not significantly affected by any drug at any dose. These results do not support a hypothesis that 5-HT release or activity at 5HT1, 2 and 7 receptors in the SCN is necessary for the production of activity-induced phase shifts in hamsters.  相似文献   

9.
The serotonin (5-HT)(2A/2c) agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), the 5-HT2C agonist 6-chloro-2-[1-piperazinyl]-pyrazine and the 5-HT2A partial agonist m-chloro-phenylpiperazine (mCPP) were injected bilaterally into the medial prefrontal cortex of male rats. DOI and mCPP, but not 6-chloro-2-[1-piperazinly]-pyrazine, elicited a dose-dependent head-twitch response (HTR). DOI-induced HTR had an ED50 of 12.8 nmoles/0.5 microl/side and was inhibited by the 5-HT2A antagonists ketanserin and MDL 100,907 but was not blocked by pretreatment with the selective 5-HT(2C/2B) antagonist SDZ SER 082. The HTR to mCPP demonstrated a bell-shaped dose-response curve with an ED50 of 1.5 nmoles/0.5 microl/side and a peak effect after 3 nmoles/side. The response to mCPP was greatly diminished by both ketanserin and MDL 100,907 and was partially reversed by SDZ SER 082. These findings suggest that the HTR produced by the direct injection of serotonergic agonists into the medial prefrontal cortex is, in part, mediated by the activation of 5-HT2A receptors. Pretreatment of rats with the 5-HT1A agonist (+/-)-8-hydroxy-dipropylaminotetralin hydrobromide inhibited the HTR to DOI. This is consistent with other evidence that suggests a functional antagonism between 5-HT1A and 5-HT2A receptor activation. The HTR to DOI was potentiated by the novel 5-HT1A selective antagonist WAY 100,635, which suggests that 5-HT1A receptors tonically regulate this behavioral response to stimulation of cortical 5-HT2A receptors.  相似文献   

10.
We have used a combination of sequence comparisons, computer-based modeling and site-directed mutagenesis to investigate the molecular interactions involved in ligand binding and signal transduction of the human 5-HT1B receptor. Two amino acid residues, S212 in transmembrane region (TM) V and F331 in TM VI, were replaced by alanines. These amino acids are conserved in many G protein-coupled receptors and therefore likely to be important for receptor function. The mutant receptors were expressed in Chinese hamster ovary cells. The 5-HT-like agonist 5-carboxamido-tryptamine (5-CT) bound with 15-fold lower affinity to the S212A mutant as compared to wild-type receptor and the antagonist methiothepin bound with 17-fold lower affinity to the F331A mutant. No reduction in the affinity of 5-HT was seen for the S212A mutant, although an equivalent mutation in the 5-HT1A receptor resulted in a 100-fold reduction of 5-HT binding. The inhibition of forskolin-stimulated cyclic AMP production by 5-HT was significantly reduced in cells expressing the F331A mutant, even though the endogenous ligand 5-HT bound with somewhat increased affinity. Methiothepin acted as an inverse agonist and increased the forskolin-stimulated cyclic AMP production at both the wild-type receptor and the mutants, and the effect was stronger on the F331A mutant. These results suggest that F331 is involved in the conformational changes necessary for signal transduction.  相似文献   

11.
A novel irreversible 5-HT1A receptor binding ligand, NCS-MPP (4-(2'- methoxy-phenyl)-1-[2'-(N-2"-pyridyl)-p-isothiocyanobenzamido]- ethyl-piperazine), based on the new 5-HT1A receptor antagonist p-MPPI (4-(2'-methoxy-phenyl)-1-[2'-(N-2"-pyridyl)-p-iodobenzamido]-ethyl -piperazine ), was synthesized, and its binding characteristics were evaluated using in vitro homogenate binding with rat hippocampal membranes. The Ki value of NCS-MPP was estimated to be 1.8 +_ 0.2 nM using analysis of concentration-dependent inhibition for the binding of [125I]p-MPPI to 5-HT1A receptors. NovaScreen of NCS-MPP showed low to moderate binding affinities to alpha-1, alpha-2-adrenergic and 5-HT2 receptors, with Ki values of 350, 420, and 103 nM, respectively. These data strongly suggest that the ligand bound to 5-HT1A receptors with high affinity and high selectivity. Irreversible inhibition of [125I]p-MPPI binding by NCS-MPP following a 5 min incubation at room temperature was concentration dependent; the inhibition increased to 50% at a concentration less than 10 nM, and became more pronounced (90%) at 400 nM. Under similar assay conditions, NCS-MPP was significantly less efficient in irreversibly inhibiting agonist ligand [125I]8-OH-PIPAT binding to 5-HT1A receptors at lower concentrations (<10nM). After pretreatment of membranes with a low concentration of NCS-MPP (2nM), there was an apparent loss of [125I]p-MPPI binding sites, as expected, but no change in the binding affinity (Kd) was observed. However, the significant increase in Kd at a higher concentration of NCS-MPP (50 nM) indicated that there may be a secondary alkylation site, which may not be directly involved in p-MPPI binding to receptors; nevertheless, it would lead to an increased Kd value. The availability of an irreversible ligand, NCS-MPP, may provide a useful tool for studies of 5-HT1A receptors in the central nervous system.  相似文献   

12.
(1-S,8-S)-N-[(hexahydro-1H-pyrrolizin-1-yl)methyl]-6-chloroimi+ ++- dazo[1,2-a]pyridine-8-carboxamide hydrochloride (SC-53606) acts as an antagonist of 5-hydroxytryptamine4 (5-HT4) receptor-mediated relaxation of carbachol-induced contractions in rat esophageal tunica muscular mucosae, but does not possess 5-HT4 agonist activity. SC-53606 demonstrated a pA2 value against 5-HT in this tissue of 7.91 +/- 0.08 (Ki = 12.3 +/- 1.17 nM). Similar pA2 values of 7.68 +/- 0.06, 7.67 +/- 0.06 and 7.63 +/- 0.05 were determined for the synthetic 5-HT4 receptor agonists SC-53116, 5-methoxytryptamine and renzapride, respectively. In addition, slopes of Schild plots for antagonism of these four agonists by SC-53606 were 1.07 +/- 0.02, 0.98 +/- 0.03, 1.04 +/- 0.02 and 0.96 +/- 0.06, respectively, and did not deviate from unity. The pA2 values for 5-HT4 antagonism against 5-HT were determined to be 6.80 +/- 0.09 for tropisetron and 7.36 +/- 0.08 for 2-methoxy-4-amino-S- chlorobenzoic acid-2-(diethylamino)ethyl ester SDZ 205-557), indicating that SC-53606 is more a potent 5-HT4 antagonist than either of the reference antagonists. Radioligand binding studies also demonstrated that SC-53606 is a selective antagonist with more affinity for 5-HT4 than for other 5-HT receptors. Displacement of radioligand binding from 5-HT1 and 5-HT2 receptors by SC-53606 was less than 50% at a 10 microM concentration. Similarly, SC-53606 displayed little binding affinity at alpha 1, alpha 2 and beta adrenergic, dopamine1, dopamine2 and muscarinic cholinergic receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The genetically dystonic (dtsz) hamster is an autosomal recessive mutant that shares several features with paroxysmal dystonia, i.e., a subcategory of inherited idiopathic dystonia in humans. Because the serotonin (5-HT) system has been suggested to be involved in dystonia, we examined the functional responsiveness of the 5-HT system in dystonic hamsters by administering various 5-HT agonists and antagonists selective for different receptor subtypes and observing the effects on dystonic attacks as well as the behavioural responses associated with drug administration. Paradoxically, marked prodystonic effects (i.e., increased severity and/or decreased latency of dystonic attacks) were seen with both the selective 5-HT1A receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT) and the selective and "silent" 5-HT1A receptor antagonist, N-tert-butyl-3[4-(2-methoxyphenyl)piperazin-1-yl]-2- phenylpropionamide [(+)-WAY-100135], whereas other 5-HT1A receptor antagonists, i.e., methyl 4[4-(4-[1,1,3-trioxo-2H-1,2-benzoiosothiazol-2-yl]butyl)-1- piperazinyl]1-H-indole-2-carboxylate (SDZ 216-525) and N1-bromoacetyl-N8-3'-(4-indolyloxy)-2'-hydroxypropyl-(Z)-1,8- diamino-p-methane (pindobind-5-HT1A) did not alter dystonia to any comparable extent. Because among these 5-HT1A receptor antagonists, (+)-WAY-100135 is the only drug known to be not only silent at postsynaptic but also presynaptic (somatodendritic) 5-HT1A receptors, the marked prodystonic effect of this drug could relate to increased 5-HT release as a result of the blockade of somatodendritic 5-HT1A receptors. The only 5-HT1A receptor antagonist that exerted antidystonic effects in hamsters was pindolol, which, however, could be related to its beta-adrenoceptor blocking action. The 5-HT1A receptor partial agonist ipsapirone exerted moderate prodystonic activity. Prodystonic activity was also determined for the mixed 5-HT1A/5-HT2 receptor agonist 5-methoxy-N,N-dimethyltryptamine, although this drug was less potent in this regard than 8-OH-DPAT. The 5-HT2 receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) exerted prodystonic effects in mutant hamsters, which, however, were also seen after the administration of the 5-HT2 receptor antagonist ritanserin. Collectively, the results of this study demonstrate that dystonia in genetically dystonic hamsters can be affected by pharmacologic manipulation of 5-HT receptors. The data may also indicate that dystonia is not a potential clinical application for selective 5-HT1A or 5-HT2 receptor antagonists.  相似文献   

14.
Flibanserin (BIMT 17) has been described as a 5-HT1A agonist with preferential affinity for postsynaptic 5-HT1A receptors and as a 5-HT2A antagonist. Indeed, using the forskolin-stimulated cAMP accumulation technique, flibanserin but not the 5-HT1A agonists buspirone and 8-OH-DPAT had agonistic activity at postsynaptic 5-HT1A receptors in the cerebral cortex. The present in vivo electrophysiological study investigated the agonistic properties of this novel compound in pre- and postsynaptic areas of the anesthetized rat brain using local microiontophoretic application and systemic administration. The inhibition induced by either local or intravenous administration of flibanserin was current- and dose-dependent. Based on the ability of 5-HT1A antagonists to block or reverse the inhibitory action of the compound, the effect of flibanserin was shown to be mediated via 5-HT1A receptors. In addition, as determined by the concurrent microiontophoretic application of flibanserin and 5-HT, flibanserin behaved as a full agonist in the dorsal raphe nucleus (DRN) and the medial prefrontal cortex (mPFC), but as a partial agonist in the CA3 region of the hippocampus. Based on neuronal responsiveness observed with the local microiontophoretic application of flibanserin, it was found that the agonist was most potent on 5-HT1A receptors in the hippocampus, followed by the mPFC and DRN (I.T50 values: 260, 1,260, and 1,365 nanocoulombs, respectively). However, based on the ED50 values obtained from intravenous administration of the drug, flibanserin was most potent in the DRN followed by the hippocampus and mPFC (ED50 values: 239, 1,414, and 2,984 micrograms/kg, respectively). Therefore, flibanserin presented a marked selectivity for postsynaptic 5-HT1A receptors when applied locally, but not when administered intravenously. It remains to be determined if flibanserin preferentially activates postsynaptic 5-HT1A receptors upon sustained systemic administration.  相似文献   

15.
A conflict procedure in pigeons was used to characterize the antipunishment effects of the putative mixed 5-hydroxytryptamine (5-HT)1A agonist/5-HT2A/2C antagonists WY 50,324, CGS 18102A, LEK 8804 and FG 5974 and to further investigate interactions between the antipunishment effects of the 5-HT1A agonists buspirone and 8-OH-DPAT [8-hydroxy-2-(di-n-propylamino)tetralin] administered in combination with the mixed 5-HT2A/2C antagonist ritanserin and the alpha 1 antagonist prazosin. The 5-HT1A agonists, buspirone and 8-OH-DPAT, which lack affinity for 5-HT2A/2C receptors, produced dose-related increases in punished responding. Of the compounds with a mixed binding profile, only WY 50,324 showed effects that were comparable to those observed after 8-OH-DPAT, whereas FG 5974 and CGS 18102A exhibited limited effects on punished responding, and LEK 8804 was ineffective. Administration of a relatively low, behaviorally active dose of ritanserin (0.16 mg/kg) significantly enhanced the potency of 8-OH-DPAT and buspirone to increase punished responding from 8 to 50-fold without altering their effects on unpunished responding. Importantly, ritanserin failed to increase the number of doses of 8-OH-DPAT that significantly increased punished responding. In contrast, prazosin (2.5 mg/kg) significantly enhanced the potency and increased the number of doses of buspirone exerting significant effects on punished responding, but did not alter the effects of 8-OH-DPAT. Taken together, the results neither explain the suggested greater efficacy in producing anxiolytic effects of compounds with putative mixed 5-HT1A agonist and 5-HT2A/2C antagonist properties, nor confirm a proposed interaction between alpha1 adrenoreceptors and 5-HT1A agonists in preclinical tests of anxiolytic activity.  相似文献   

16.
A new series of arylpiperazide derivatives of 1-naphthylpiperazine of general formula 4 has been prepared and evaluated as 5-HT1B antagonists. Binding experiments at cloned human 5-HT1A, 5-HT1B, and 5-HT1D receptors show that these derivatives are potent and selective ligands for 5-HT1B/1D subtypes with increased binding selectivity versus the 5-HT1A receptor when compared to 1-naphthylpiperazine (1-NP). Studies of inhibition of the forskolin-stimulated cAMP formation mediated by the human 5-HT1B receptor demonstrate that the nature of the arylpiperazide substituent modulates the intrinsic activity of these 1-NP derivatives. Among them, 2-[[8-(4-methylpiperazin-1-yl)naphthalen-2-yl]oxy] -1-(4-o-tolylpiperazin-1-yl)ethanone (4a) was identified as a potent neutral 5-HT1B antagonist able to antagonize the inhibition of 5-HT release induced by 5-CT (5-carbamoyltryptamine) in guinea pig hypothalamus slices. Moreover, 4a was found to potently antagonize the hypothermia induced by a selective 5-HT1B/1D agonist in vivo in the guinea pig following oral administration (ED50 = 0.13 mg/kg).  相似文献   

17.
The 5-HT2C receptor is one of three closely related receptor subtypes in the 5-HT2 receptor family. 5-HT2A and 5-HT2B selective antagonists have been described. However, no 5-HT2C selective antagonists have yet been disclosed. As part of an effort to further explore the function of 5-HT2C receptors, we have developed a selective 5-HT2C receptor antagonist, RS-102221 (a benzenesulfonamide of 8-[5-(5-amino-2,4-dimethoxyphenyl) 5-oxopentyl]-1,3,8-triazaspiro[4.5]decane-2,4-dione). This compound exhibited nanomolar affinity for human (pKi = 8.4) and rat (pKi = 8.5) 5-HT2C receptors. The compound also demonstrated nearly 100-fold selectivity for the 5-HT2C receptor as compared to the 5-HT2A and 5-HT2B receptors. RS-102221 acted as an antagonist in a cell-based microphysiometry functional assay (pA2 = 8.1) and had no detectable intrinsic efficacy. Consistent with its action as a 5-HT2C receptor antagonist, daily dosing with RS-102221 (2 mg/kg intraperitoneal) increased food-intake and weight-gain in rats. Surprisingly, RS-102221 failed to reverse the hypolocomotion induced by the 5-HT2 receptor agonist 1-(3-chlorophenyl)piperazine (m-CPP). It is concluded that RS-102221 is the first selective, high affinity 5-HT2C receptor antagonist to be described.  相似文献   

18.
The role of serotonin 5-HT? receptors (5-HT?R) in the discriminative stimulus effects of fenfluramine was investigated. Male Sprague-Dawley rats were trained to discriminate (±)-fenfluramine (2 mg/kg ip) from saline using a 2-lever, water-reinforced paradigm. Drug-lever responding after fenfluramine was dose-dependent. The 5-HT2C/1BR agonist mCPP and the 5-HT2CR agonist MK 212 fully substituted, whereas the 5-HT2A/2CR agonist DOI partially substituted, for the training drug. The 5-HT2BR agonist BW 723C86 engendered saline-lever responding. The 5-HT2C/2BR antagonist SB 206553 completely antagonized the fenfluramine discrimination as well as the full substitutions of mCPP and MK 212 and the partial substitution of DOI. The selective 5-HT2AR antagonist M100907 partially suppressed the stimulus effects of fenfluramine, mCPP, and MK 212 and almost fully attenuated the partial substitution of DOI. RS 102221, a selective 5-HT2CR antagonist that does not cross the blood-brain barrier, did not alter the fenfluramine cue. Results demonstrate that the discriminative stimulus effects of fenfluramine are centrally mediated by 5-HT2CR and to some extent by 5-HT2AR. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
In the present paper, we report the synthesis and the binding profile on 5-HT1A, alpha1 and D2 receptors of a new series of 1-[omega-(4-arylpiperazin-1-yl)alkyl]-3-(diphenylmethylene)- 2, 5-pyrrolidinediones (III) (1-4) and -3-(9H-fluoren-9-ylidene)-2, 5-pyrrolidinediones (IV) (1-4), in which the alkyl linker contains 1-4 methylenes and the aryl group is variously substituted. The results obtained are compared to those previously reported for bicyclohydantoin (I) and the related bicyclic amine (II) series. A considerable part of the tested compounds 1-4 demonstrated moderate to high affinity for 5-HT1A and alpha1 receptor binding sites but had no affinity for D2 receptors. The study of the length of the alkyl chain and the imide substructure has allowed us to suggest some differences between the 5-HT1A and the alpha1-adrenergic receptors: (i) for III and IV, affinity for the 5-HT1A receptor as a function of the length of the methylene linker decreases in the order 4 > 1 > 3 approximately 2, while for the alpha1 receptor affinity decreases in the order 3 approximately 4 > 1 approximately 2; (ii) the no-pharmacophoric steric pocket (receptor zone which does not hold the pharmacophore of the ligand but holds a nonessential fragment of the molecule) in the 5-HT1A receptor has less restriction than the corresponding pocket in the alpha1 receptor. Compounds 3a,e, which are highly selective for alpha1-adrenergic receptors, displayed antagonist activity. On the other hand, the best compromise between affinity and selectivity for 5-HT1A receptors is reached in these new series with n = 1, which is in agreement with our previous results for the bicyclohydantoin derivatives I. Two selected compounds (1d and 4e) retain agonist properties at postsynaptic 5-HT1A receptors. The same 5-HT1A agonist profile found in these compounds suggests the existence of two different no-pharmacophoric steric pockets in this receptor and a different interaction of compounds with n = 1 and n = 4. The information obtained from the interpretation of the energy minimization and 2D-NOESY experiments of compounds 1-4 together with the synthesis and binding data of new conformationally restrained analogues 4k-m is in good agreement with this working hypothesis.  相似文献   

20.
Serotonergic and histaminergic neuronal systems are both involved in mediation of the stress-induced release of the pituitary hormones prolactin (PRL) and ACTH. We investigated the possibility of an interaction between serotonin (5-HT) and histamine (HA) in regulation of PRL and ACTH secretion in conscious male rats. Animals were pretreated systemically with antagonists to 5-HT1, 5-HT2 or 5-HT3 receptors prior to intracerebroventricular (icv) administration of HA. The 5-HT1 + 2 receptor antagonist methysergide prevented and the 5-HT2 receptor antagonist LY 53857 attenuated the HA-induced PRL release while the 5-HT3 receptor antagonist ondansetron had no effect on this response. None of the three 5-HT receptor antagonists affected the ACTH response to HA. Specific blockade of HA synthesis by alpha-fluoromethylhistidine or blockade of postsynaptic HA receptors by icv infusion of the H1 receptor antagonist mepyramine or the H2 receptor antagonist cimetidine inhibited the PRL response to 5-HT or to the 5-HT precursor 5-hydroxytryptophan (5- HTP) given in combination with the 5-HT reuptake inhibitor fluoxetine (Flx). Blockade of the histaminergic system had no effect on the ACTH response to serotonergic stimulation. The H3 receptors are inhibitory HA receptors. Systemic pretreatment with the H3 receptor agonist R(alpha)methylhistamine, or the H3 receptor antagonist thioperamide had no effect on the hormone response to activation of the serotonergic system by 5-HTP plus Flx. We conclude that the serotonergic and histaminergic neuronal systems interact in their stimulation of PRL secretion, but not in their stimulation of ACTH secretion. This interaction involves serotonergic 5-HT1 and 5-HT2 receptors and histaminergic H1 and H2 receptors. Furthermore, the previously observed inhibitory effect of the H3 receptor agonist R(alpha)methylhistamine on stress-induced PRL and ACTH release seems not to be exerted by activation of presynaptic H3 receptors located on serotonergic neurons but rather on histaminergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号